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Abstract
Associative memory (AM) refers to the ability to relate a memory with an input and targets the
restoration of corrupted patterns. It has been intensively studied in classical physical systems, as in
neural networks where an attractor dynamics settles on stable solutions. Several extensions to the
quantum domain have been recently reported, displaying different features. In this work, we
develop a comprehensive framework for a quantum AM (QAM) based on open quantum system
dynamics, which allows us to compare existing models, identify the theoretical prerequisites for
performing AM tasks, and extend it in different forms. The map that achieves an exponential
increase in the number of stored patterns with respect to classical systems is derived. We establish
the crucial role of symmetries and dissipation in the operation of QAM. Our theoretical analysis
demonstrates the feasibility of addressing both quantum and classical patterns, orthogonal and
non-orthogonal memories, stationary and metastable operating regimes, and measurement-based
outputs. Finally, this opens up new avenues for practical applications in quantum computing and
machine learning, such as quantum error correction or quantum memories.

1. Introduction

A system that is able to dynamically retrieve a set of pre-stored information can be generically referred to as
associative memory (AM), a concept that has its roots in neurophysiology [1] and has been developed in the
context of artificial intelligence. In 1982 a system was designed to function as an AM, the Hop-field neural
network (HNN) [2]. It consists of an all-to-all network of classical spins, modeling neurons in active (+1) or
inactive (−1) states, evolving to minimize a certain energy function through repeated network updates. This
drives the system to settle into one of many stable configurations, the one associated with a stored memory,
or pattern. The HNN is indeed characterized by an attractor dynamics that enables the retrieval of a given
pattern from a corrupted initial state. This features AMs as content-addressable memories, to be
distinguished from random-access memory where data is accessed based on specific addresses instead of
content [3]. A distinction can also be set between AMs and another common application of neural networks,
such as classification. While AM focuses on retrieving patterns from distorted or incomplete inputs,
classification tasks involve assigning inputs to specific categories based on learned features [4].

In the quest to enhance and extend the capabilities of AMs, quantum realizations of these systems have
been proposed. Indeed, in a broader context, the success of neural networks in diverse applications—such as
image and speech recognition, natural language processing, and autonomous systems—is driving innovation
beyond classical settings establishing the burgeoning field of quantum machine learning [5, 6]. Recently,
several different approaches have modeled quantum versions of AMs. The first proposals were reported in
the nineties during the advent of quantum computing, mostly dealing with circuit-based approaches, and do
not necessarily replicate the specific dynamics and functions of classical AM. Many of these digital models
consist of variations of the Grover search algorithm [7–9], or quantum implementations of perceptrons [10,
11]. Digital approaches have been employed in pattern classification tasks, including particle tracks in
high-energy physics [12], and genetic sequences [13]. While inspired by the classical HNN, such models
cannot be regarded as proper AMs, as they lack the association property, as we will discuss later.
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Besides digital models, a second and more recent approach, which we refer to as analog, explores the
dynamics of (open) quantum systems for realizing quantum instances of AMs. Here, generalizations of
HNNs range from two-level quantum systems to qudits, in both closed [14–16] and open quantum systems
[17–20]. Some analog approaches deal with the derivation of effective AM models that exploit a quantum
substrate. Examples include multimode Dicke-models [21, 22] and confocal cavities QED systems [23].
These models embed patterns via classical learning rules. Additional works focus on unleashing the storage
of quantum patterns by exploiting quantum walks [24, 25] or single driven-dissipative resonators [26, 27].

Alongside proposing different models and implementations for quantum AM (QAM), a major
motivation in this emerging field is to understand the potential advantages of using quantum mechanics in
these systems, and how quantum effects can improve their performance. Some current literature
contributions focus on quantifying the storage capacity, which refers to the amount of information
(memories) that can be stored in a system of a given size. Among the analog models that have been proposed,
many of them operate in a vanishing storage capacity regime and deal with classical patterns [17, 19, 21].
These works account for quantum effects inducing, e.g., new dynamical phases [17, 19], or speed-ups in the
retrieval of information [18]. The limits of storage capacity have recently been the subject of research in a
number of different models that are presented as QAM instances [20, 23, 26, 28]. Some of the proposals do
not exhibit any improvement compared to the classical counterpart [20], while other instances seem to
identify a potential advantage [26, 28]. Overall, this diverse collection of proposals is defining the emergent
field of QAM, but a general framework that can describe and include the distinct instances of QAMs is still
lacking. Consequently, performing meaningful comparisons among different models or identifying the
potential of non-classical approaches remains a challenge.

The objective of this work is to develop a comprehensive theory framework for QAM, beyond existing
model-specific results, by providing a unified foundation for understanding the working principles of this
function. Assuming a general approach, our starting point is the set of necessary properties that a generic
open quantum system must show to be regarded as an AM. This will allow us to bound the capacity of
quantum states that can be stored by these kinds of systems and compare it with their classical equivalents, to
frame both classical and quantum patterns, and to establish the presence of symmetries, through the
definition of basins of attraction, as the enabling mechanism for QAMs. Once the operative conditions for a
QAM are identified, not only one can design QAM channels to store patterns in stable states but exploit the
metastable phase in open quantum systems to store transient patterns. This reformulation combines the
framework developed here for stable pattern storage with the theory of classical metastability [29], allowing
for faster association at the expense of ephemeral patterns.

The work is organized as follows: in section 2 we review some key points of classical and QAMs, that we
employ in section 3 to provide a general definition; the result of the latter allows one to build general
quantum channels, which are compatible with an AMs. An instance of such a construction is given in
section 4 for both orthogonal and non-orthogonal memories. The bound to the amount of information that
can be stored in a QAM is addressed in section 5. The full characterization of systems that provide QAM is
addressed in sections 6 and 7, respectively discussing the role of symmetries and the alternative formulation
for metastable patterns. Finally, some physical instances of AM models are revisited within the introduced
framework in section 8, followed by conclusive discussion in section 9.

2. Preliminaries

In this section, we introduce some preliminary concepts and report results on the storage capacity of classical
and QAMs. In the classical regime, the HNN [2] is the most paradigmatic example of a general content-
addressable system endowed with a number of fixed-point attractors, as anticipated in the Introduction.
Patterns are locally stable states, each of them being related to a basin of attraction, a set of states that are
dynamically evolved towards the corresponding memory. A sketch can be seen in figure 1, where three fixed
points encode letters that are used to correct distorted inputs. The collection of patterns is typically encoded
via a learning rule in the neural connection, which, together with the dynamical evolution, characterizes the
retrieval of information. These synaptic weights are chosen through a given dependency in terms of the states
that serve as memories, one of the most employed being the Hebbian prescription [30]. Details about the
HNN dynamics and Hebbian rule can be found in appendix A.

An important figure of merit that characterizes AMs is the storage capacity, defined as the maximum
number of states that can be stored with respect to the size of the system,

α=
maximum number of patterns

system size
. (1)
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Figure 1. The phase space of a classical system powered with AM capabilities can be divided into different regions called basins of
attraction. Each basin contains a stable fixed point of the dynamics, which is regarded as the pattern or memory. Then, any other
initial condition belonging to the same basin will naturally converge to the corresponding pattern. Thus, the initial corrupted or
distorted state is associated with the corrected version of the state, the pattern.

For each AM with a given learning rule, the corresponding storage capacity α can be derived. For instance, in
a HNN consisting on n binary neurons storingM uncorrelated patterns it is defined as α=M/n. This
definition is based on the fact that classical patterns are stored as binary strings of length n, in which one can
define at most n orthogonal vectors. Then, if such patterns are encoded using the Hebbian prescription, the
storage capacity has been shown to have a limiting value of αHebb = 0.138 [31]. When considering other
learning rules, such as, e.g. the pseudo-inverse learning rule [32] or nonlinear interactions [33], the
corresponding limiting value α can increase, e.g. reaching n/ lnn2 in the case of correlated patterns [34].

The problem of storage capacity has been posed in more general terms in the seminal works of E.
Gardner [35, 36]. Here, a set of patterns is imposed to be stationary states, while leaving the learning rule as a
free parameter. As a result, a bound is found on the maximum value that the storage capacity can take for an
entire class of HNN-type AMs, i.e. irrespective of the specific learning prescription. Such a bound is often
referred to as a critical storage capacity, and denoted as αc, to distinguish it from the storage capacity α
calculated when a learning rule is defined. In Gardner’s approach, the critical storage capacity of a HNN is
analyzed as a function of both the degree of pattern correlation and the size of the basin of attraction. In the
limit of uncorrelated patterns and vanishing basin of attraction, the critical storage capacity reads αHNN

c = 2,
decreasing when enlarging the basin of attraction, and increasing when permitting correlated patterns [35].

Concerning the issue of quantifying the storage capacity of QAM looking for a possible quantum
advantage, two main directions have been followed. Several research contributions tackle specific instances of
QAM. In this case, some results point out possible improvements with respect to the Hebbian limit [23, 26],
while other platforms are shown to behave similarly or worse than classical instances [20]. Alternatively,
recent contributions aim to provide more general bounds on the critical storage capacity of QAMs [20, 28].
In these scenarios, and in the same spirit of Gardner’s program, one can define a quantum system
undergoing retrieval dynamics while leaving the learning rule as a free parameter. In this respect, [28] shows
that a quantum neural network behaving as a QAM can outperform the critical capacity of classical
counterparts when renouncing any basin of attraction.

As previously stated, establishing the extent of the applicability of the aforementioned outcomes remains
a challenge, as a theoretical framework must still be defined. This is required to support both patterns as
quantum states, similar to [27, 28], as well as memories exhibiting finite basins of attraction [20, 21].
Tackling such an issue can allow us to shed light on (i) the general form of a QAM, and advance on the
question as to whether the (ii) the critical storage capacity of the latter can outperform the classical AM.

In the two following sections, we combine the general approach that exploits the evolution of an open
quantum system, as introduced in [28], with Hopfield’s original idea [2] of dynamical systems displaying
finite basin of attractions for each pattern. With these tools, we will tackle the issue (i) and (ii), to
characterize the properties and form of a completely positive trace-preserving (CPTP) channel for QAM.
Moreover, we will compute the storage capacity for different scenarios, particularly distinguishing the tasks
where the retrieval of information is done with or without a measurement.

3. Theoretical framework

To address the limitations of current approaches and build a comprehensive theory, we start by framing the
original definition of AM [2] into the quantum formalism. Here, the pure (mixed) states of a physical system
are represented by elements of a Hilbert spaceH (B(H) space of bounded linear operators onH), and the
dynamical evolution is described through a quantum channel, say Λ. This general formulation allows us to
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identify which properties and limitations characterize a generic (open) quantum system with (H,Λ), that
can be regarded as a QAM. Although we will first focus on the case of stable memories, we will see in
section 7 that the conditions imposed are also satisfied for metastable patterns.

Quantum maps or channels are a key tool for describing the dynamics of quantum systems. They can be
employed to formalize the continuous dynamics of open quantum systems undergoing Markovian evolution
[37, 38], as well as discrete operations in quantum computation. Examples include noise effects, several types
of qubit errors, and measurement processes [39]. In general, a quantum channel Λ is an operator that
transforms a state ρ̂ ∈ B(H) into another state Λ(ρ̂) = ρ̂ ′, where ρ̂ ′ ∈ B(H ′) [40], the simplest example
being a unitary evolution, Λ(ρ̂) = Ûρ̂Û†. The evolution of a state ρ̂ ∈ B(H) by means of a CPTP map reads

Λ(ρ̂) =
t∑

α=1

K̂αρ̂K̂
†
α, (2)

where t⩽ (dimH)2, and {K̂α} represents a set of Kraus operators, satisfying [41]

t∑
α=1

K̂†
αK̂α = I. (3)

With the above definitions, we now identify the key properties and conditions that a quantum system with
(H,Λ)must possess to function as a QAM.

As we anticipated, a classical AM requires a particular set of states to be stable fixed points of the
dynamics. This guarantees that states representing the correct patterns are left unchanged by the dynamics
and no information is lost (we will see a generalization in terms of metastable states in section 7). We thus
require that (condition C1) the set ofM states representing the patterns, {ρ̂µ ∈ B(H)}Mµ=1, are fixed points
of the CPTP map [37, 42, 43]

Λ(ρ̂µ) = ρ̂µ, µ= 1, . . . ,M. (4)

For CPTP maps acting on finite-dimensional Hilbert spaces, condition (4) admits at least one solution [44]
where maps with just one fixed point are said to be ergodic [45]. The existence of multiple fixed points has
been extensively studied in the literature for both finite [46] and infinite dimensional cases [47]. Of course,
any convex combination of these states is also a fixed point, an occurrence that we will further comment on
at the end of the section (see equation (7)). To encompass the most general case of multiple fixed points, we
may introduce the notion of maximal invariant subspace, S , that, loosely speaking, represents the largest
collection of states within the Hilbert space that remains unchanged under the action of the map. More
precisely, given a state ρ̂ with support supp(ρ̂)⊂ S , then supp[Λ(ρ̂)]⊂ S , where supp(X) is the set of
eigenvectors of X orthogonal to its kernel (i.e. with non-vanishing eigenvalues). As a note, eigenstates of
unitary maps do not represent patterns as defined in equation (4), except for the trivial identity map.

Secondly, we introduce the concept of decaying spaceD, that encompasses all quantum states |ω⟩ whose
evolution under (many r) repeated actions of Λ vanishes inD, i.e.D =

{
|φ⟩ ∈ H | ⟨φ|Λr(ρ)|φ⟩ −→

r→∞
0

for any ρ ∈ B(H)
}
[46, 47]. In other words, the states in the decaying subspace are mapped through Λ into

a state in the stable subspace. For a QAM to function, we need the invariant subspace S to be attractive:
either a state belongs to it or is mapped towards it via the evolution, the decaying subspace being thus
complementary to the stable subspace,D = S⊥. It is worth noticing that the decomposition of the Hilbert
space into a stable subspace S , containing the patterns, and a decaying subspaceD, containing the
classification information is not general. Indeed, it can be proven to hold true for CPTP maps in the
Markovian case [48], if dimH<∞, which need to be attractive [49] if dimH=∞ [46, 50]. For generic
CPTP maps with an invariant subspace S , the above restriction on the Hilbert space decomposition is
satisfied by Kraus operators that take the form [51]

K̂α =


KS
α KSD

α

0 KD
α

 . (5)

Here, KS
α (KD

α) evolves the state in the invariant (decaying) subspace, and KSD
α plays the role of mapping the

states from the decaying subspace into the stable one. We will refer to this term as cross-term. Importantly,
the zero block in the lower-left corner ensures that no information escapes from the stable state space.
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Figure 2. Quantum model for AM. The points represent the elements in a basis of the Hilbert spaceH, and the quantum states

ρ̂µ represent the patterns to be stored. Here, ρ̂1 and ρ̂2 are orthogonal patterns while the states ρ̂
(3)
ℓ represent non-orthogonal

patterns. The figure highlights the division of the Hilbert space into decaying subspacesDµ, containing the initial conditions that
converge towards the corresponding pattern.

Condition C1 is necessary but not sufficient for a QAM as we require that a sub-collection of states inD
are associated with a particular pattern ρ̂µ. To this end, we require that (condition C2) for each fixed point
ρ̂µ there exists a region of the Hilbert space,Dµ (decaying space), enclosing all the states that converge to the
corresponding fixed point, ρ̂µ, under the action of the map Λ (see figure 2). Then, analogous to the classical
basin of attraction depicted in figure 1, the quantum basin of attraction of a given fixed point is the
combined set of the decaying space and the fixed point itself, as we will write explicitly in the next section.
We stress the importance of modeling the presence of non-vanishing decaying spaces. Indeed, this feature
excludes the trivial identity map from QAM and identifies the association property of the AM. We further
note that beyond classical AM, its necessity is also recognized in (open) quantum systems performing
quantum state classification tasks [24, 52, 53].

Finally, we enforce that (condition C3) any two states from different decaying spaces cannot be
associated with the same memory ρ̂µ. To this end, we prevent the regions {Dµ} from sharing common states,
by requiring their mutual disjointness. A way to impose the latter is actually dealing with mutual orthogonal
spaces (see definition (1)) [54]. Although it may appear restrictive, we will see that this condition is fulfilled
in physical quantum systems, like, e.g. those displaying symmetries [55–57], as well as classical systems with
multiple stable fixed points [58]. As we will see, this condition permits perfect association between a state
and its closest pattern, while non-ideal situations exhibiting mixed decaying subspaces generally lead to
imperfect QAM [59].

In summary, a quantum system with (H,Λ) can function as a QAM if it meets the following
requirements: (C1) patterns are quantum states ρ̂µ that are fixed points of the map Λ as in equation (4); (C2)
for each pattern ρ̂µ there exists a non-vanishing decaying space,Dµ; and (C3) the decaying spaces are
mutually disjoint.

We can now formally define the necessary ingredients for a QAM as follows:

Definition 1. A system with Hilbert spaceH, and CPTP map Λ functions as a QAM if there exists a set ofM
fixed point of the map {ρ̂µ ∈ B(H)}Mµ=1, each one associated with a non-empty decaying subspace Dµ ⊂D,
withD the total decaying subspace, orthogonal to the maximal invariant one,D = S⊥. The subspacesDµ are
orthogonal one another,Dµ ⊥Dν ∀µ ̸= ν, and

lim
r→∞

Λr (σ̂) = ρ̂µ ∀σ̂ ∈ B (Dµ) . (6)

As commented before, each decaying subspaceDµ has a non-vanishing dimension, dimDµ = dµ > 0 ∀µ,
so each memory pattern can be reached from at least one decaying state. Moreover, since we imposed
disjointness on the decaying spaces,Dµ ∩Dν is trivial ∀µ ̸= ν, the evolution does not allow states from
different basins to mix [54]. It also follows, from the disjointness of the decaying spaces, that the total
decaying subspaceD is the direct sum of the individual decaying subspacesDµ:D =

⊕M
µ=1Dµ; whereM is

the number of fixed points.
Although definition 1 shares similarities with its classical counterpart, it is worth noticing that there is a

fundamental difference between the two descriptions. While a classical HNN evolves towards its local stable
states through nonlinear dynamics, the dynamics of a quantum system is inherently linear due to the
fundamental principles of quantum mechanics [6]. As a consequence, given a QAM as defined above, any
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classical mixture of the set of patterns is also left unchanged by the action of the map. For instance, if we take
two memory states ρ̂µ and ρ̂ν , their classical mixture pρ̂µ +(1− p)ρ̂ν is an invariant state, as it is

Λ[pρ̂µ +(1− p) ρ̂ν ] = pρ̂µ +(1− p) ρ̂ν . (7)

Moreover, it is straightforward to see that each of the classical mixtures can be related to a new corresponding
basin of attraction. Referring to the above example, any state belonging toDµ⊕Dν is associated with a
classical mixture of the respective patterns. As a result, for a QAM obeying the definition 1, and displaying a
set ofM patterns, any classical mixture of the latter behaves as an additional stable fixed point. By adopting
the nomenclature employed in classical associative memories, classical mixtures of patterns can be referred to
as spuriousmemories—states that are local minima but do not belong to the family of patterns. It is worth
noticing that, even though classical AMmodels as the HNN exhibit spurious patterns [30], this occurrence is
not systematic. Only certain combinations of classical patterns, and only in certain parametric regimes, will
behave as stable fixed points of the dynamics. This is instead a common feature of all QAM and we will
discuss how this potential limitation can be handled in section 4.

We also point out a distinctive capability of QAM that does not have any classical counterpart. Depending
on the tasks that one delineates for the patterns upon retrieval, a QAM can support either a quantum output
or a classical one. The first one refers to any set of (combination of) patterns that is retrieved by the QAM
and does not require any further process, in this sense consisting of a quantum output. Suppose instead that
one needs to access classical information. In that case, a measurement process can be further performed,
leading to a probabilistic result of the patterns that matched the initial state. The measurement process may
be seen as a nonlinear activation function which may produce an incorrect output [10]. However, the
possibility of repeating the process a statistically significant number of times leads to additional information
about the nature of the initial state, such as its similarity not only to the closest pattern but also to the rest of
the patterns [60]. We will comment on the differences between quantum and classical outputs in section 5,
where we will study the storage capacity properties of quantum associative memories.

4. Quantummaps for AM

In this section, we provide an explicit construction of a quantum channel Λ to realize a QAM according to
definition 1 and discuss how a learning rule emerges in this formalism. For pedagogical reasons, we divide
the analysis into two parts. First, in section 4.1, we build a map storingM⊥ orthogonal quantum states {ρ̂µ}
as fixed points; this is in analogy to classical models which require nearly orthogonal patterns for error-free
retrieval [2]. Then, in section 4.2 we consider a more general problem where besides storingM⊥ orthogonal
patterns {ρ̂µ}, we also allow for the storage of M̸⊥ non-orthogonal quantum patterns {ρ̂ℓ}. Hence, we
demonstrate how a quantum formulation of AM can store arbitrary quantum states as patterns without
restriction on the dimension of the stable subspace. It is important to specify that in this section, we are able
to derive maps fulfilling the QAM as in definition 1, upon some further restrictions. Hence, other maps may
exist that store the same patterns. The notation introduced in this section is summarized in table 1 for
reference.

4.1. Orthogonal patterns
Let us consider the finite-dimensional Hilbert spaceH with dimH= N, and let {ρ̂µ ∈ B(H)}Mµ=1 be the
M=M⊥ orthogonal patterns. We will then set the conditions under which definition 1 can be met. That is,
consistently with the general discussion of section 3, the space requires an orthogonal decomposition into
stable and decaying parts such thatH= S ⊕D where the decaying part can be further decomposed intoM
orthogonal blocks {Dµ}Mµ=1 (one for each pattern). Similarly, the stable subspace must be further
decomposed intoM orthogonal blocks {Sµ}Mµ=1 where each Sµ is the support of the pattern ρ̂µ,
Sµ = supp(ρ̂µ) [46, 47]. These subspaces give rise to the maximal invariant subspace as S =

⊕
µSµ ⊂H

where dimSµ = sµ ⩾ 1 and dimS =
∑

µ sµ = NS < N the corresponding dimensions. The complementary
part of the Hilbert space which is not preserved by the map spans the decaying subspace of dimension
dimD = N−NS = ND, where the dimension of each block is dµ = dimDµ. Then, due to the orthogonality
between blocks in both stable and decaying parts, we can define the basins of attraction for each pattern as
Hµ = Sµ⊕Dµ such thatH=

⊕M
µ=1Hµ.

In our scenario, we want to guarantee that the association of a set of states to a specific pattern, say ρ̂µ,
only occurs within subspaces corresponding to the same label µ. As such, also the Kraus operators need to
display a block structure, K̂α =

⊕
µ K̂α,µ, where each one of the block K̂α,µ has the form defined by

6
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Table 1. Notation.

Symbol Definition

H Complete Hilbert space
B(•) Space of bounded linear operators on •
S/D Stable/decaying subspace ofH
NS/ND Dimension of stable/decaying subspace
N Total Hilbert space dimension
Sµ Irreducible stable subspace
Xτ Decoherence-free subspace (DFS)
C⊥/C ̸⊥ Number of irreducible/decoherence-free subspaces
ρ̂µ Orthogonal pattern spanning Sµ

ρ̂
(τ)
ℓ Non-orthogonal pattern in Xτ

M⊥/M ̸⊥ Number of orthogonal/non-orthogonal patterns

m(τ)
̸⊥ Number of non-orthogonal patterns in Xτ

M Total number of patterns

Dµ/D(τ)
ℓ Decaying subspace of pattern ρ̂µ/ρ̂

(τ)
ℓ

sµ/sτ Dimension of Sµ/Xτ

dµ/d
(τ)
ℓ Dimension ofDµ/D(τ)

ℓ

Hµ/H(τ)
ℓ Basin of attraction of ρ̂µ/ρ̂

(τ)
ℓ

|µj⟩/|τj⟩ jth basis element of Sµ/Xτ

|ω(µ)
x ⟩/|ω(τ,ℓ)

x ⟩ xth basis element ofDµ/D(τ)
ℓ

equation (5). Consequently, the map Λ, when restricted to the subspaceHµ, has a unique fixed point ρ̂µ [61].
Thus, the operators K̂α,µ must leave invariant the µth subspace Sµ, i.e. K̂α,µSµ ⊆ Sµ [37, 45]. In order to
continue building the map we impose the commutation relation [K̂α,µ, ρ̂µ] = 0 ∀α to ensure that the patterns
are fixed points of Λ [37, 43]. We will also assume the Kraus operators K̂α,µ to be diagonalizable. Moreover,
the map further restricted to the stable subspace Sµ contains a unique, full-rank fixed point, ρ̂µ, and it can be
shown that [KS

α,µ, ρ̂µ] = 0 [51]. Hence, ρ̂µ and the operators KS
α,µ can be simultaneously diagonalized with

respect to the same basis of eigenvectors, say {|µj⟩}
sµ
j=1. In this basis, it is ρ̂µ =

∑sµ
j=1 u

µ
j |µj⟩⟨µj|, and we

write for the operator on the stable subspace

KS
α,µ =

sµ∑
j=1

aαµ,j|µj⟩⟨µj|. (8)

This constrains each Kraus operator KS
α,µ to the form of the pattern state.

Let us now focus on the part of the Kraus operators K̂α,µ acting on the decaying subspace, which we
called KD

α,µ. Reminding thatDµ ⊥ Sµ, and without loss of generality, we identify with {|ωµ
j ⟩}j, j = 1, . . .,dµ,

the orthonormal basis ofDµ in which KD
α,µ can be diagonalized,

KD
α,µ =

dµ∑
x=1

cαµ,x|ωµ
x ⟩⟨ωµ

x |. (9)

It is worth noticing the label µ for states |ωµ
j ⟩, which highlights that any state σ̂ belonging to the µth decaying

subspace, σ̂ ∈ B(Dµ), is associated to the corresponding stable subspace Sµ through equation (6). Finally,
the cross-term K̂SD

α,µ must map any state from the decaying subspaceDµ to the stable one, Sµ. That is, it
needs to satisfy KSD

α,µDµ ⊂ Sµ. Therefore, referring to the basis {|ωµ
x ⟩} and {|µj⟩}, the most general

expression for the cross-term reads

KSD
α,µ =

sµ∑
j=1

dµ∑
x=1

bαµ,j,x|µj⟩⟨ωµ
x |. (10)

For equations (8)–(10) to define a proper set of Kraus operators, we need to impose that any density
operator, under the action of the map Λ, is evolved into a likewise valid density operator. Thus, the CPTP
condition defined by equation (3) must hold. Leaving the details of the derivation in appendix B, we get∑

α

|aαµ,j|2 = 1, (11a)

7
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∑
α

(
aαµ,j

)∗
bαµ,j,x = 0, (11b)

∑
α

 sµ∑
j=1

(
bαµ,j,y

)∗
bαµ,j,x

+ δxy|cαµ,x|2 = δxy, (11c)

which represent a series of constraints for the coefficients of equations (8)–(10).
As a last step, it is worth noting that the form of the Kraus operators presented describes a system whose

dynamics converge to a set of multiple steady states. However, the steady states are not uniquely defined as
any state diagonal in the basis of KS

α,µ is also a fixed point of the map. For this reason, we need to enforce the
associativity condition (6) for a specific set of states {ρ̂µ}Mµ=1, corresponding to the patterns. Hence, to
guarantee that the states of the decaying subspaceDµ evolve to the corresponding pattern, ρ̂µ, the cross-term
must satisfy ∑

α

KSD
α |ωµ

x ⟩⟨ωµ
y |
(
KSD
α

)†
= κµxyρ̂µ, (12)

where the constant κµxy determines the rate at which the operator |ωµ
x ⟩⟨ωµ

y | converges to the pattern ρ̂µ.
The three conditions defined by equation (11a)–(11c), together with equation (12), determine the

learning rule which allows one to construct the CPTP map ruling a QAM with the quantum patterns
{ρ̂µ}Mµ=1. In appendix C.1, we continue the derivation of the Kraus operators by determining the value of the
parameters in relation to the quantum patterns.

The CPTP map Λ derived in this section enables an AMmechanism. This can be compared with [28]
where a complete basis of the Hilbert space is assumed to be a set of fixed points of the map. However,
imposing such a strict bound on the number of patterns implies no decaying space, i.e. the basins of
attraction are reduced to the same memories. It is then concluded that the CPTP map realizing the
association acts as a genuine incoherent operation [62], i.e. as a decoherence map taking any quantum state
to its classical mixture [63]. It is possible to show that the map Λ that we derived reduces to the one obtained
in [28], upon restricting Λ itself to the stable subspace (see appendix D for details on the derivation).
Moreover, our generalization permits us to endow each pattern with a finite-dimensional set of states that
decay all and solely to the pattern itself. Any initial state displaying components in different basins of
attraction will asymptotically evolve towards a convex superposition of patterns. However, the presence of
finite-dimensional and disjoint decaying subspaces,Dµ, permits the occurrence of pure association to one
and only one pattern ρ̂µ.

Example 1. Local amplitude damping. To illustrate the concepts introduced so far, let us consider a simple
example based on a modified amplitude damping channel acting on the subspace spanned by the pat-
tern |µ⟩ and the decaying state |ωµ⟩. The Kraus operators of the map in such basis are K̂0,µ = a0µ|µ⟩⟨µ|+√
1− qµ|ωµ⟩⟨ωµ|, K̂1,µ = a1µ|µ⟩⟨µ|, and K̂2,µ =

√
qµ|µ⟩⟨ωµ| where qµ ∈ [0,1),

∑
α |aαµ |2 = 1, and aαµ ̸= aαν

if µ ̸= ν (in such a way the Kraus operators are not proportional to the identity). Then, the complete Kraus
operators are given by K̂α =

⊕
µ K̂α,µ. Here, a state σ̂(0) =

∑
µ,ν xµν |µ⟩⟨ν|+ yµν |ωµ⟩⟨ων |+ zµν |µ⟩⟨ων |+

z∗µν |ωµ⟩⟨ν| transforms, under the action of the map, as

xµν →

[∑
α

(
aαµ

)∗
aαν

]
xµν +

√
qµqνyµν ,

yµν → yµν

√
(1− qµ)(1− qν),

zµν → a0µ
√
1− qνzµν .

Thus, in the limit of infinite applications of the map, the state σ̂(0) is evolved toward the state σ̂(∞) =∑
µ(xµµ + yµµ)|µ⟩⟨µ|. This demonstrates the associative nature of the map since the contribution of the

decaying states yµµ is driven towards the respective pattern. At the same time, the off-diagonal terms do not
affect the outcome. Since they represent transitions between different basins of attraction (i.e. between dif-
ferent patterns |µ⟩ and |ν⟩), their presence is transient during the evolution. Still, they vanish in the limit of
infinite applications of the map.

Beyond exhibiting the associative mechanism, the above example is also illustrative of the limitations
exposed in section 3. Indeed, the map leaves not only the intended memory patterns but also any convex
combination of them (i.e. their mixtures) unchanged. As already commented, this occurrence can be
considered the quantum equivalent of a spurious memory, a stable state that is not in the family of patterns.

8
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Figure 3. Action on quantum states of the most general form of the QAMmap Λ capable of storing orthogonal and
non-orthogonal quantum patterns. Each orthogonal block in the stable subspace may correspond to an irreducible subspace

Sµ = supp(ρ̂µ) or a decoherence-free subspace such that {ρ̂(τ)ℓ ∈ B(Xτ )}ℓ. The orthogonality of the states in the decaying
subspace guarantees perfect association under the evolution of the map Λ (represented by the arrows).

To overcome the presence of spurious memories in QAM, a potential strategy can be devised by leveraging
quantum measurements as follows. In the case of orthogonal patterns, one can always define a projective
measurement, {P̂µ}Mµ=1, such that tr P̂µρ̂ν = δµν . Then let us assume that an initial, corrupted state σ̂(0)

whose probability to be found in a state corresponding to the pattern µ is p(0)µ = tr P̂µσ̂(0) = xµµ. Via
multiple applications of the map, the state σ̂(0) has been associated with a final, spurious state whose

probability to be found in the pattern µ is p(∞)
µ = tr P̂µσ̂(∞) = xµµ + yµµ > p(0)µ . Therefore, performing the

quantum measurement will yield, with high probability, the pattern µ∗ that best overlaps with the final state
σ̂(∞), up to a failure probability that depends on the contribution of the other patterns in the initial state.

4.2. General formulation
In the previous section, we developed a quantum channel Λ allowing the storage of states with orthogonal
support. In the following, we extend such analysis to the case of a QAM displaying general quantum states as
patterns, thus including those with non-orthogonal support. Hence, we want to first identify the structure of
the Hilbert space allowing for storage ofM⊥ orthogonal {ρ̂µ} (supp(ρ̂µ)∩ supp(ρ̂ν) = ∅∀µ,ν) andM ̸⊥
non-orthogonal patterns {ρ̂ℓ} (supp(ρ̂ℓ)∩ supp(ρ̂ℓ ′) ̸= ∅ for some ℓ,ℓ ′) to subsequently construct the
CPTP map realizing the association.

Consistently with definition 1, the structure of the Hilbert space is again divided into two orthogonal
blocks, S andD = S⊥, representing the invariant subspace and the decaying one, respectively. With respect
to the former, there appearM⊥ fixed points of the map {ρ̂µ}M⊥

µ=1, each of them spanning irreducible and
orthogonal supports Sµ. In addition, we aim at storing M̸⊥ non-orthogonal patterns {ρ̂ℓ} for which we

divide into orthogonal sets say {ρ̂(τ)ℓ ∈ B(Xτ )}
m(τ)

̸⊥
ℓ=1 . Hence, in order to consider the most general partition,

we assume ρ̂(τ)ℓ ⊥ ρ̂(τ
′)

ℓ if they belong to different sets τ ̸= τ ′ but those in the same set are not orthogonal,

i.e. supp(ρ̂(τ)ℓ )∩ supp(ρ̂(τ)ℓ ′ ) ∀ℓ,ℓ ′ is not trivial. As such, notice that the total number of non-orthogonal

patterns readM ̸⊥ =
∑C ̸⊥

τ=1m
(τ)
̸⊥ givenm(τ)

̸⊥ non-orthogonal patterns in the τ th set. The storage of such
patterns requires the addition of C ̸⊥ subspaces, Xτ , each one preserving the coherences between their
minimal invariant states, which hence exhibit non-orthogonal supports. In this general scenario, the
decomposition of the invariant subspace reads [46, 47]

S =

M⊥⊕
µ=1

Sµ⊕
C̸⊥⊕
τ=1

Xτ , (13)

9
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where both Sµ, µ= 1, . . .,M⊥ and Xτ , τ = 1, . . . ,C ̸⊥ are all mutually orthogonal subspaces [46, 47, 64]. For
the sake of completeness, we also add that each subspace Xτ can be in turn decomposed in terms of
orthogonal subspaces, Xτ =

⊕
jWj,τ . However, such a decomposition is not unique: there exists an

isomorphism, Uτ , mapping a given decompositionWj,τ to an equivalent one,W ′
j,τ , and thus relating all the

minimal invariant states in Xτ one another. This, in turn, yields, in the most general case, subsystems in Xτ

that are free from decoherence [46, 47]. In particular, any decomposition of Xτ in terms of 1-dimensional
Wj,τ corresponds to a decoherence-free subspace (DFS), whereas any decomposition in terms of at least
2-dimensionalWj,τ corresponds to a noiseless subsystem. In the following, we will focus on the DFS case,
and the non-unique decomposition in terms of the subspacesWj,τ will play no role. It is worth also stressing
that any other coherence, e.g. between Sµ and Xτ , as well as between any two of either Sµ and Sµ ′ , or Xτ

and Xτ ′ is not preserved by the evolution. For the sake of clarity, we write explicitly the full decomposition of

the Hilbert space,H=
⊕M⊥

µ=1(Sµ⊕Dµ)
⊕C̸⊥

τ=1(Xτ ⊕Dτ ).
The presence of non-orthogonal patterns requires a more general definition of the QAMmap Λ. The

Kraus operators can be decomposed as K̂α =
⊕M⊥

µ=1 K̂α,µ

⊕C ̸⊥
τ=1 K̂α,τ . Here, the first part of the operators

{K̂α,µ}M⊥
µ=1 act on the related subspace

⊕M⊥
µ=1Sµ⊕Dµ, so the results derived in section 4.1 can be directly

applied. The remaining part, {K̂α,τ}
C ̸⊥
τ=1, needs to be slightly reformulated to permit the storage of a given set

of non-orthogonal patterns. Indeed, let us focus on the subspace Xτ , with dimXτ = sτ , and let {|τj⟩}sτj=1 be a
basis of such a space. It is worth noticing that, as we deal with DFS, each Xτ preserves any quantum state that
can be written in a basis of the subspace. As a consequence, so long as there exists a non-empty decaying
subspaceDτ , and no other properties are enforced, any state belonging to Xτ behaves as a pattern.

Nonetheless, we aim at storing the specific set of fixed points {ρ̂(τ)ℓ ∈ B(Xτ )}
m(τ)

̸⊥
ℓ=1 for τ = 1, . . . ,C ̸⊥.

Accordingly, a more detailed structure of the decaying subspaceDτ needs to be defined.

In order to store the collection of fixed points ρ̂(τ)ℓ , ℓ= 1, . . .,m(τ)
̸⊥ , which are in general neither

orthogonal nor linearly independent, we associate, to each one of them, a decaying subspace

D(τ)
ℓ = span{|ω(τ,ℓ)

x ⟩}d
(τ)
ℓ

x=1 . The states {|ω
(τ,ℓ)
x ⟩}dℓx=1 form an orthonormal basis, which is orthogonal to the

stable subspace, consistently with definition 1. As a result, we can write the τ th decaying space through a
block structure,

Dτ =

m(τ)
̸⊥⊕

ℓ=1

D(τ)
ℓ . (14)

Hence, the most general expression for the Kraus operators acting on Xτ ⊕Dτ is again given in terms of a
block structure, as defined by equation (5). The three main blocks, K̂S

α,τ , K̂
D
α,τ , which act on Xτ ,Dτ ,

respectively, and the mixing one, K̂SD
α,τ , can be tackled separately.

Let us consider first the Kraus operator acting on the stable subspace. Here, because coherences between
elements of the basis, |τj⟩⟨τj|τk, are preserved, and given that we impose the fixed point condition defined by
equation (4), the operator is proportional to the identity [51]

KS
α,τ = aατ Iτ . (15)

The coefficients aατ need to satisfy the CPTP conditions (11a), so it holds that
∑

α |aατ |2 = 1.
The Kraus operator acting on the decaying subspaceDτ can be further reduced. Indeed, given the

decomposition in equation (14), it is KD
α,τ =

⊕m(τ)
̸⊥

ℓ=1 KD
α,τ,ℓ, where

KD
α,τ,ℓ =

d(τ)
ℓ∑
x=1

cα,τℓ,x |ω
(τ,ℓ)
x ⟩⟨ω(τ,ℓ)

x |. (16)

Finally, we focus on the mixing term, K̂SD
α,τ , which plays a key role as it maps states belonging to the

subspaceD(τ)
ℓ into the corresponding pattern ρ̂(τ)ℓ . In general, we can write

KSD
α,τ =

m(τ)
̸⊥∑

ℓ=1

sτ∑
j=1

d(τ)
ℓ∑
x=1

bα,τℓ,j,x|τj⟩⟨ω
(τ,ℓ)
x |, (17)

which needs to satisfy the associativity condition∑
α

KSD
α |ω(τ,ℓ)

x ⟩⟨ ω(τ,ℓ
′)

y |
(
KSD
α

)†
= δℓℓ ′κℓxyρ̂

(τ)
ℓ . (18)
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We note that, in comparison to equation (12) an additional delta function appears. This guarantees that
cross-terms belonging to different decaying subspaces are suppressed and do not evolve to stable states
different from the patterns. In case the quantum patterns can be expressed as pure states, i.e. ρ̂ℓ = |ψℓ⟩⟨ψℓ|,
then it is possible to find an expression for the Kraus parameters in equations (15)–(17) as can be seen in
appendix C.2.

5. Storage capacity

As anticipated in section 2, an important quantity that characterizes AMs is the storage capacity introduced
in equation (1). This expression can be interpreted as the density of states that an AM can faithfully store. In
the quantum realm, one would like to store quantum states and subsequently quantify how many of them
can be accommodated by a QAM. Here, in analogy with the number of classical orthogonal vectors that
define the space of possible patterns, a meaningful quantity to consider is the Hilbert space dimension
quantifying the number of possible orthogonal states of the system. For instance, a network of n qubits
features a 2n-dimensional Hilbert space. However, as we will see, not all of them can be simultaneously stored
due to the restrictions imposed in definition 1. This value, 2n, serves as a fundamental limit on the storage
capacity of a QAM based on n qubits.

More in general, a N-dimensional Hilbert space admits N orthogonal states. Hence, the most natural
generalization of equation (1) defining the storage capacity of a QAM is

αQ =
M

dimH
, (19)

whereM identifies the number of stored patterns. Similarly to the classical case, analyzing the storage
capacity of a QAM amounts to determining the maximum number of patterns that can be faithfully stored.
The advantage of this definition lies in its universality for any finite-dimensional quantum system, as it
remains independent of the number of constituent units. In contrast, classical definitions of storage capacity
are typically tied to specific models, such as HNNs, where the capacity is often defined in terms of the number
of neurons [2]. Alternative formulations, based on the number of synapses [65] or more recent approaches
with different activation functions [54], show that such definitions lack general applicability. For this reason,
the definition proposed here seeks to overcome these limitations by providing a model-independent
framework suitable for comparisons between quantum systems. However, meaningful comparisons between
classical and quantum memories must account for differences in pattern encoding and system scaling.

Before going ahead, let us remark that, as already mentioned at the end of section 3, we can devise two
different kinds of QAM tasks, leading to different definitions of storage capacities: (i) in the first case, that we
identify as quantum output, we ask the computation to give the requested quantum pattern (ρ̂µ) as a direct
output, which is not measured at any stage. This approach is suitable for applications where the retrieved
quantum information needs to be manipulated or processed further using quantum operations; and (ii) in
the second scenario, corresponding to a classical output being related to the quantum state that undergoes a
measurement process. The outcome of this measurement is the projected state with a probability depending
on the overlap with the corresponding memory. Measurements lead to the identification of the label (µ)
associated with the basin of attraction as it would also occur in classification tasks. We stress that the
distinctive feature in (ii) is the presence of measurement, while the entire retrieval process, including the
evolution map, is ruled by quantum dynamics [6].

We also note that this distinction is independent of the form of the patterns, which can still be generic
quantum states. In the following, we will analyze the critical storage capacity of a QAM for both scenarios.
We remind (see section 2) that the maximum storage capacity depends on the given learning rule [31–33]
and it is upper-bounded by the optimal or critical storage capacity, which is instead independent of the
specific learning prescription [35, 36].

5.1. Quantum output
We will now focus on retrieved states that are regarded as quantum outputs. In this case, let us first consider
the critical storage capacity when restricting to orthogonal patterns. The result is contained in the following:

Theorem 1. The critical storage capacity of a quantum associative memory storing a set of orthogonal patterns is
αQ,⊥
c = 1/2, and it is saturated by rank-1 patterns, ρ̂µ = |ψµ⟩⟨ψµ|.

Proof. For each pattern, we enforce a non-empty decaying subspace. Furthermore, since we want to store
the maximum number of patterns with finite basins of attraction, we set dµ = 1 (the smallest non-vanishing
decaying subspacewith one element). At this point, a condition that allows one to exploit all the stable subspace
for storing patterns consists of taking the minimum rank for each pattern, setting sµ = 1. This in turn implies
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ρ̂µ = |ψµ⟩⟨ψµ|. Collecting the above results, the number of stored patterns isM= NS = ND, and the Hilbert
space dimension is N= NS +ND. Thus, by employing equation (19), it is αQ,⊥

c = (N/2)/N= 1/2.

The criticality of this bound can be understood as follows. Attempting to store more than N/2
orthogonal patterns would result in insufficient decaying states for each pattern, and the additional patterns
would have no associated basin. Therefore, the extra memory becomes unreachable unless the initial state
perfectly matches the desired pattern. Conversely, removing a pattern would create a spurious state in the
stable subspace, i.e. a state that remains invariant under the dynamics but is not a memory. In this case, more
information could be stored without increasing the dimension of the system.

Our formulation establishes a significant advantage in terms of storage capacity compared to classical
associative memories. Going back to the network of n qubits of Hilbert space dimension 2n, its critical
capacity corresponds to 2n−1 patterns, which exponentially outperforms classical models. Through a general
formulation, we derived (in the previous section) a CPTP map displaying this exponential storage capacity
and also presenting finite basins of attraction. We notice that this map improves the capacity 2n/2 of other
QAM analysis with finite basins of attraction [28].

Beyond orthogonal patterns, we also construct a map (see in section 4.2) that enables storing an arbitrary
number of non-orthogonal states in DFSs. However, this does not imply an infinite storage capacity. The
reason is that, by requiring a non-empty basin of attraction for each non-orthogonal pattern, we obtain a
larger Hilbert space dimension only as a result of an increasing decaying part. On the contrary, in the
orthogonal case, the addition of a pattern requires a larger dimension for both the stable and the decaying
subspace.

In the most general case (see section 4.2) we haveM⊥ (M̸⊥) orthogonal (non-orthogonal) patterns stored
in a stable subspace of dimension NS, which we can divide into NS

⊥ +NS
̸⊥. Note that N

S
̸⊥ is independent of

the number of non-orthogonal patterns, while NS
⊥ grows at least linearly withM⊥. Instead, the dimension of

the decaying subspace ND grows for each memory (independent of its type), so that the storage capacity is

αQ =
M⊥ +M ̸⊥

NS +ND
=

M⊥ +M ̸⊥

NS
⊥ (M⊥)+NS

̸⊥ +ND (M)
. (20)

Then, taking into account theorem 1 and assuming ND ∼O(M), the critical storage capacity is

αQ
c ∼

M⊥ +M ̸⊥

2M⊥ +M ̸⊥
. (21)

As an example, let us consider a stable subspace consisting of only one DFS, S = X , with dimS = NS
̸⊥ = NS.

The storage ofM=M ̸⊥ patterns requires a finite-dimensional decaying subspace that is at least
M-dimensional. Since only the dimension of the decaying subspace needs to increase, the storage capacity is
M/(M+NS), which converges to a critical storage capacity of 1 in the limit ofM→∞.

5.2. Classical output
An AM can be used to perform classification tasks for which it is necessary to obtain information about the
state at the end of the process. Hence, a measurement of the final quantum state must be performed to
determine the pattern. As anticipated in section 3, due to the phenomenology of measurements in quantum
mechanics, one has to repeat the process with multiple copies of the initial state. The resulting statistics
provide information on the similarity between the different patterns. This, in turn, allows one to identify
which memory is most similar to the final state (as in the classical case), and to gain information on how
close the input state was compared to other patterns. This situation is relevant when taking into account
non-orthogonal quantum patterns (see section 4.2), which cannot be perfectly discriminated [66, 67]. As a
result, this occurrence impacts the storage capacity of a QAM when employed to retrieve classical
information.

We aim to assess the effect of measurement on the storage capacity for the case outlined above. To this
end, let us consider the general case in which patterns are given byM⊥ orthogonal quantum states {ρ̂µ}, and
M ̸⊥ non-orthogonal quantum states {ρ̂ℓ}, with tr(ρ̂µρ̂ℓ) = 0 ∀µ,ℓ. For the first ones, there exists a projective
measurement P̂⊥µ , such that tr P̂

⊥
µ ρ̂ν = δµν , perfectly discriminating the orthogonal states. Instead, for the

non-orthogonal states, any measurement displays a finite error probability Perr [68]. Although several
techniques exist that minimize the discrimination error, these depend on the particular states to be
distinguished [69, 70]. In general, we will assume that for the set of non-orthogonal patterns {ρ̂ℓ}, an
optimal positive operator valued measure can be found, with a given success probability for discriminating
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non-orthogonal states, Poptsucc = 1− Popterr < 1. Then, following equation (21), the storage capacity becomes

αQC
c ∼

M⊥ + PoptsuccM ̸⊥

2M⊥ +M ̸⊥
. (22)

In the limit M̸⊥→∞, the success probability vanishes, as it is not possible to discriminate an infinite
number of quantum states within a finite-dimensional state space. In addition, notice that αQC

c < αQ
c , and

for any sub-optimal measure we will have αQC < αQC
c . This result is consistent with the fact that, when

dealing with non-orthogonal patterns, the amount of information stored is smaller than in the orthogonal
scenario as a result of patterns being correlated. This occurrence is also highlighted in the classical scenarios
when considering correlated patterns [35], and it has been recently introduced in a continuous-variable
system, where the memories are not necessarily orthogonal [26].

Example 2. Storage capacity with DFS. Consider an AM with patterns being M geometrically uniform states
(GUS), |ψµ⟩= Ûµ−1|ψ⟩, µ= 1, . . .,M, where Û is a unitary operator satisfying ÛM = IS and the patterns are
in general not orthogonal (withM ̸⊥ =M). Without loss of generality, the decaying subspace is set to contain
M orthogonal states {|ωµ⟩}Mµ=1, each associated with the corresponding pattern |ψµ⟩. In section 8.3 we show
that we can indeed construct the channel that realizes the association between states in the decaying subspace
with the corresponding pattern. Therefore, following equation (20), the storage capacity for such a map is
αQ =M/(NS +M), whereNS is the dimension of the stable subspace.When increasing the number of patterns,
the dimension of the stable subspace remains constant. Thus, in the limit M→∞ we get a finite storage
capacity, αQ

c → 1. Instead, when including a measurement process, we need to account for the maximum
success probability of discriminating GUS. This can be written as Poptsucc = NS/M, by using the so-called square-
root measurement [71, 72]. Therefore, the resulting storage capacity vanishes when increasing the number of
patterns, i.e. it is αQC

c = PoptsuccαQ = NS/(NS +M)→ 0 asM→∞.

6. Symmetries enabling QAM

This section explores systems that can be used as quantum associative memories, providing both the patterns
and a learning rule. In particular, we discuss how memories can be encoded in steady states of a given open
system that exhibits symmetry.

First of all, to enforce the presence of quantummemories, we consider systems that admit multiple steady
states, or, equivalently, multiple conserved quantities. This occurrence alone does not provide any insight
into the size and shape of decaying spacesDµ, and thus, on basins of attraction. A sufficient condition for the
Hilbert space to separate in invariant subspaces, and related decaying ones is the additional appearance of
certain types of symmetries, as we illustrate below. Before going ahead, we point out that there are some
differences between how symmetries emerge in Lindbladian open quantum systems and generic CPTP maps.
As such, in the following, we will address both scenarios.

Let us start considering an open quantum system evolving in a Markovian fashion, as described by the
Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) equation [38]

˙̂ρ= Lρ̂=−i
[
Ĥ, ρ̂

]
+
∑
ℓ

F̂ℓρ̂F̂
†
ℓ −

1

2
{F̂†ℓ F̂ℓ, ρ̂}.

Here, the Liouvillian L is the generator of the quantum map, Ĥ is the Hamiltonian of the system, and F̂ℓ are
the so-called jump operators. The system admits multiple steady states if the eigenspace of eigenvalue zero of
the Liouvillian, say Lss, is multi-dimensional. The maximum dimension of this eigenspace is N2, where
N= dim(H). Notably, while all steady states are elements of Lss, the contrary is, in general, not true [56].
Before proceeding further, it is convenient to recall that the evolution of a generic operator Ô reads
˙̂O= L†(Ô) = i[Ĥ, Ô] +

∑
ℓ F̂

†
ℓÔF̂ℓ−

1
2{F̂

†
ℓ F̂ℓ, Ô}, where L† is the adjoint of the Liouvillian with respect to

trace norm.
In this scenario, if the system displays a strong symmetry, we can make use of the steady states as

quantum memories and, additionally, identify the basins of attraction. Indeed, in a strong symmetry, by
definition, there exists a number, sayM, of operators Ĵµ that commute with both the Hamiltonian Ĥ and the

jump operators F̂ℓ. If the latter condition holds true, then {Ĵµ}Mµ=1 is a set of conserved quantities,
˙̂Jµ = 0∀µ,

and, equivalently, the stationary space Lss isM-dimensional. Moreover, a strong symmetry also induces a
weak one (where Ĵµ commute with L) [55, 56], thus allowing one to separate the Hilbert space in symmetry
sectors,H=

⊕
µHµ. Notably, the evolution inside each µth space is split from the others.

If theM conserved quantities are orthogonal projectors onto the subspaceHµ, the stationary space Lss
does not contain coherences, and each of the subspacesHµ hosts a stationary state, which plays the role of
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the memory. With respect to the notation employed in section 4, we can thus identify Sµ, the support of the
µth stationary state, as well as its corresponding decaying subspaceDµ as the orthogonal complement of Sµ
with respect toHµ. In the most general situation, the stationary space Lss also contains steady state
coherences [56]. In this case, the structure of the stationary state is more complex, as it can host DFSs and
noiseless subsystems, which have been introduced in section 4.

It is worth remarking that there are cases where a set ofM conserved quantities, Ĵµ, does not correspond
to any symmetry [56]. These are referred to as dynamical symmetries. Here, both the emergence of the latter
and the identification of the decaying space have to be carried out on a case-by-case basis.

Let us now consider the case of a generic CPTP map Λ. At variance with the previous Markovian case, to
derive a separation of the Hilbert space in symmetry sectors, we need to restrict to conserved orthogonal
projectors. Indeed, on the one hand, this guarantees multiple steady states, and, on the other hand, it ensures
the presence of a global symmetry of the map and of a Hilbert space decomposition. For a more detailed
discussion on symmetries and CPTP maps see, e.g. [51]. For our purpose, the following is sufficient:

Proposition 1. Orthogonal projectors Ĵµ are conserved quantities, Λ†(Ĵµ) = Ĵµ, iff they commute with the Kraus
operators [Ĵµ, K̂α] = 0, ∀α,µ.

Proof. To demonstrate the above result, we proceed similarly to the case of generic conserved quantities (see,
e.g. theorem 5(ii) in [73]). For the sake of a lighter notation, we drop the index µ in the following. If [Ĵ, K̂α] = 0
then Λ†(Ĵ) =

∑
α K̂

†
αJK̂α = Ĵ(

∑
α K̂

†
αK̂α) = Ĵ. Conversely, let us assume Λ†(Ĵ) = Ĵ. It can be shown that the

following relation holds, ∑
α

[
Ĵ, K̂α

]† [
Ĵ, K̂α

]
= Λ† [Ĵ† Ĵ]− Ĵ† Ĵ.

The right-hand side of the above expression vanishes, as Ĵ† Ĵ= Ĵ, Ĵ being a conserved quantity by assumption;
the left-hand side is a sum of positive semidefinite quantities, vanishing iff [Ĵ, K̂α] = 0.

As a consequence of the above Proposition, the set Ĵµ forms an algebra of matrices, which in turn induces
a block decomposition of the Hilbert spaceH. Each state ρ̂ ∈ B(H) can be thus decomposed as a block
matrix, the evolution inside each block being separate. It is worth stressing that the conservation of the
projectors, (i.e. their commutation with the Kraus operators), also implies the invariance of the CPTP map
under Ĵµ, ĴµΛ(ρ̂)Ĵ†µ = Λ(Ĵµρ̂Ĵ†µ), in analogy with a weak symmetry for a Markovian system. In the case Ĵµ
being generic conserved quantities, the above results are restricted to the maximal invariant subspace S . It
can indeed be shown that the Kraus operators KS

α commute with the components P̂S ĴµP̂S, P̂S identifying the
projector on S . Hence, the block structure identified through the algebra of matrix of P̂S ĴµP̂S pertains to the
subspace S only. As a consequence, the identification of the decaying subspace is not straightforward, in
analogy with the case of a dynamical symmetry in the Markovian case.

7. Framework for metastable patterns

All the previous discussion is based on the use of memories encoded into steady states. However, recently, the
possibility of realizing a QAM in a metastable regime has been shown [26, 27]. This transient memory can
speed up retrieval because the decay to the metastable patterns occurs on a shorter timescale than the steady
state decay. Therefore, tasks that do not require long-term memory can benefit from this approach. In this
section we address this alternative scenario that will be also illustrated in section 8.2.1.

In general, the evolution of a state that undergoes a GKSL equation can be decomposed as

ρ̂(t) = etL [ρ̂(0)] = ρ̂ss +
∑
k⩾2

cke
tλk R̂k, (23)

where λk are the Liouvillian eigenvalues, sorted for convenience as 0⩾ Re[λk]⩾ Re[λk+1], where we assume a
single steady state ρ̂ss with eigenvalue λ1 = 0 and R̂k are the corresponding right eigenmatrices of the
superoperator L. The coefficients ck depend on the initial state ρ̂(0) as ck = tr[L̂†k ρ̂(0)] where L̂k are the left

eigenmatrices normalized such that tr[L̂†j R̂k] = δjk.
In open quantum systems, metastability is typically observed as a consequence of a gap between two

successive eigenvalues of the Liouvillian, say λn and λn+1 (see figure 4). After t> τn+1, all modes with
k> n+ 1 give exponentially small contributions to the evolution and can be neglected. Here the system
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Figure 4. The spectrum of a Liouvillian superoperator with a metastable regime displays a large gap between two consecutive
eigenvalues λk. Here we sketch the decay time τ−1

k =−Re[λk] of the eigenvalues. From left to right, we encounter the fast
decaying modes with τ ≪ 1 separated by a large gap from the four modes defining the metastable manifold that includes the
stable state corresponding to λ1 = 0.

enters the metastable regime, where the evolution of a generic initial state ρ̂(0) can be decomposed as

ρ̂(t)≈ ρ̂ss +
n∑

k=2

ck (t) R̂k = PMM [ρ̂(0)] , (24)

where PMM is a projector superoperator on the first nmodes characterizing the metastable manifold. Such a
manifold can induce a DFS or a noiseless subsystem structure [74], but we will focus here on the so-called
classical metastability, where each state can be expressed as a convex combination of n disjoint metastable
phases {ρ̂µ} [29],

ρ̂(t) =
n∑

µ=1

pµ (t) ρ̂µ, (25)

with pµ(t)⩾ 0 the probability that the state is in the µth phase. The metastable phases correspond to physical
states that do not evolve in time. Here we assume the possible corrections to classicality are negligible so that
the metastable phases and derived quantities are well-defined within the framework of [29].

Then, the dynamics is fully encoded in the evolution of the probabilities {pµ(t)}, obtained from the set of

projectors {P̂µ} defined as P̂µ =
∑n

k=1(C
−1)µkL̂k with (C)µk = tr L̂†k ρ̂µ. The projectors satisfy tr P̂µρ̂ν = δµν

and
∑

µ P̂µ = I but may have eigenvalues smaller than zero or exceeding one if the classicality corrections are

large. Importantly, for a general quantum state σ̂ ∈ B(H), the value pµ = tr [P̂µσ̂] represents the probability
that the state σ̂ evolves into the metastable phase ρ̂µ during the transient regime. Hence, this value is
preserved until the final decay to the steady state for t> τn. For this reason, the projectors can be used to
define the basins of attraction of each pattern since any state with pµ > 1/2 is guaranteed by equation (25) to
be found in the metastable phase ρ̂µ with the largest probability. In analogy to the steady state scenario (see
section 6), the metastable phases ρ̂µ act as invariant states for the projective map PMM and the projectors P̂µ
are the associated conserved quantities.

Therefore, any quantum system displaying classical metastable dynamics can be understood as an AM
where (C1) the patterns are the disjoint metastable phases {ρ̂µ}, invariant under the map PMM; (C2) there
exists a subspace

Hµ = span
{
|v(µ)j ⟩ | P̂µ|v

(µ)
j ⟩= λ

(µ)
j |v

(µ)
j ⟩,λ

(µ)
j > δ

}
, (26)

with δ ⩾ 1/2 containing all the initial conditions evolving under the corresponding pattern with the highest
probability, as well as the µth metastable phase; (C3) the subspacesHµ are approximately disjoint, and can
be therefore regarded as basins of attraction. Here, ‘approximately’ is meant to remind that the classical
metastability description is in general accurate up to some corrections, which are indeed responsible for
dealing with the approximate orthogonal phases {ρ̂µ} and their approximate disjoint basins of
attraction (26). Moreover, as discussed in [29], setting δ ⩾ 1/2 permits one to deal with well-defined basins
of attraction. Instead, generic eigenspacesHµ feature states decaying into non-trivial mixture of patterns,
hence turning out to be non-disjoint.

The case of classical metastability falls into the category of QAM with orthogonal patterns, where the
number of patterns depends on the dimension of the metastable manifold (the number of slow-decaying
Liouvillian modes). Then, the appearance of a gap between the eigenvalues λn and λn+1 allows one to store n
patterns. The difference between the real parts of the eigenvalues determines the length of the metastable
transient. The decay time to the metastable manifold is τn+1 =−[Reλn+1]

−1, and τn =−[Reλn]−1
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determines the end of the metastable regime. Since the dynamics is frozen in between, a measurement can be
taken at τn+1 to determine the pattern. The longer we wait to measure, the more likely we are to get a wrong
result since jumps between patterns occur at a rate of 1/τn. Of course, in the long time limit, all information
is lost as the state decays to the final steady state.

Before proceeding further, we highlight the main differences between a QAM working in the steady state
regime, as described by definition 1, and a QAM in the metastable scenario. First of all, it is worth noticing
that, for metastable patterns, the association condition of equation (6) does not occur in the infinite time
limit but in a transient regime τn+1 < t< τn. Further, we also stress that while the basins of attraction of
definition 1 are kept orthogonal, (both the supports of fixed points and decaying subspaces are orthogonal
among each other), the ones defined by equation (26) are proven to be approximately disjoint, as
commented above. One could attempt to similarly adopt a less strict requirement for the decomposition of
the decaying subspaceD of definition 1 into the decaying spacesDµ. However, this would lead to a weaker
definition of QAM. Indeed, at variance with the phenomenology of the classical metastability, there would
be, a priori, no means to identify a parameter [similar to δ in equation (26)] allowing one to characterize and
delimitate states evolving into non-trivial mixture of memories.

Finally, we note that the definition of storage capacity given in equation (19) is still valid. In this case, the
number of patterns is determined by the number of metastable phases (the dimension of the metastable
manifoldHMM) and the system size is still the total Hilbert space dimension

αMM =
dimHMM

dimH
. (27)

Again, in analogy with the steady state case, the metastable manifold represents the stable subspace of the
system where memories are encoded and retrieved but the association happens in the full Hilbert space
composed of both stable and decaying subspaces.

8. Examples

In this section, we will analyze three examples of QAM based on the theoretical framework constructed in
previous sections.

8.1. Quantum randomwalk
An interesting approach to QAM was taken in [24], where the proposed system is a dissipative quantum walk
that converges to the predefined patterns in the long time limit. Here, as in the classical HNN, the patterns
{xµ}M⊥

µ=1 are represented by strings of n-bits, x
µ = (xµ1 ,x

µ
2 , . . . ,x

µ
n ) with xµj ∈ {0,1}, which are encoded in n

two-dimensional quantum systemsH2 such that xµ→ |xµ⟩= |xµ1 ⟩|x
µ
2 ⟩ · · · |xµn ⟩. Notice that, while the

corresponding classical patterns are in general non-orthogonal, this (basis) encoding leads to orthogonal
patterns, i.e. quantum states {|xµ⟩} satisfying ⟨xµ|xν⟩= δµν , soM=M⊥. Thus, the stable subspace is
spanned by the patterns, i.e. S = span{|xµ⟩}, and any other state inH⊗n

2 belongs to the decaying subspace.
The dynamics can be visualized as a dissipative quantum walk on an n-dimensional hypercube (see

figure 5(a)), where the nodes are all possible vectors ω = (ω1,ω2, . . . ,ωn) ∈ {0,1}n, and edges between two
nodes exist if and only if their Hamming distance dH(ω,ω ′) =

∑n
i=1 |ωi −ω ′

i |/2= 1, i.e. they differ only by
one bit. Using this definition, we can identify the decaying subspace of the µth pattern as the collection of
states that are closer to it in terms of Hamming distance than to any other pattern xν ,

Dµ = span
{
|ω⟩ ∈ S⊥ | arg min

ν
dH (ω,x

ν) = µ
}
. (28)

Then, the dissipative quantum walk must associate a state |ω⟩ ∈ Dµ with |xµ⟩. This is engineered by ensuring
that (C1) the patterns are invariant states of the Liouvillian superoperator, and (C2) the jump operators,
denoted by L̂ω→ω ′ , couple only states that reduce the Hamming distance towards a pattern,

L̂ω→ω ′ = |ω ′⟩⟨ω| if min
µ

dH (ω
′,xµ)<min

µ
dH (ω,x

µ) . (29)

A jump between two states happens at a rate γ, so the walker needs a time dH(ω,xµ)/γ to reach the fixed
point.
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Figure 5. Dissipative quantum walk for QAM. (a) The nodes of the cube represent the possible states of the walker, and edges are
connected between pairs of nodes if their Hamming distance is 1. The coherent dynamics couple states with a strength η if they
belong to the same basin and κ otherwise. The dissipative part drives the states towards the corresponding fixed points with a rate
γ. (b) Strong symmetry induced in the Liouvillian compatible with figure 3 for κ= 0. (c) Exact evolution of the initial state |000⟩
for different coupling values between the basins and fixed η/γ = 0.1. The y-axis shows the overlap of the evolving state with the
patterns: |011⟩ (solid lines) and |111⟩ (dashed lines). The association to the pattern |011⟩ is perfect only for vanishing κ (black
lines). For κ> 0 the symmetry is lost, and the probability of retrieving the second pattern increases until κ > γ where both
patterns become equally probable.

The dynamics is completed by a Hamiltonian that couples all nodes at distance 1 except the patterns [24].
Hence, the Hamiltonian matrix reads

⟨ω ′|Ĥ|ω⟩=

{
η |ω⟩, |ω ′⟩ ∈ Dµ

κ |ω⟩ ∈ Dµand |ω ′⟩ ∈ Dν µ ̸= ν
, (30)

where nodes are coherently coupled with strength η to themselves and to any other node in the same basin,
and with strength κ to nodes in different basins. The complete Liouvillian is thus L(ρ̂) =−i[Ĥ, ρ̂]
+
∑

ω,ω ′ γD[L̂ω→ω ′ ]ρ̂, whereD[Ô]ρ̂= Ôρ̂Ô†− 1
2{Ô

†Ô, ρ̂}. The patterns are steady states by construction,
and in fact, the stable subspace is a DFS where the coherences between patterns are also preserved
(L(|xµ⟩⟨xν |) = 0).

For instance, in the example of figure 5, there are two patterns x1 = (0,1,1) and x2 = (1,1,1) with
associated decaying subspacesD1 = span{|000⟩, |001⟩, |010⟩} andD2 = span{|100⟩, |101⟩, |110⟩}
respectively. The collection of jump operators produces bit-flips in the last two qubits to drive the walker
towards the patterns, while the coherent Hamiltonian produces oscillations between (κ) and within (η) the
basins.

Let us first focus on the case κ= 0. In panel (a) we can see that the cube separates into two disconnected
regions containing the states inH1 (bottom face) andH2 (top face). Moreover, we can observe the presence
of a strong symmetry P̂= σ̂z⊗ I2⊗ I2, which means that the overlap with the first qubit is preserved during
the evolution. That is, for any initial state σ̂ ∈ B(H) it holds that tr[P̂σ̂(t= 0)] = tr[P̂σ̂(t=∞)], such that if
σ̂ ∈ B(Hµ) then limt→∞ eLt(σ̂) = |xµ⟩⟨xµ|, thus satisfying the associativity condition (6). The AM
implemented by a quantum random walk with strong symmetry associates a pure state |s⟩ with s ∈ {0,1}n to
the closest pattern {xµ} in terms of its Hamming distance.

If the coupling between the basins is κ> 0, then the strong symmetry is broken, and information can
flow between them. As an example, in panel (c) we show the time evolution of the observables
P̂011 = |011⟩⟨011| and P̂111 = |111⟩⟨111| for the initial state |000⟩. Increasing the value of the coupling κ
decreases the final retrieval probability since the walker has a non-vanishing probability of going to the other
basin. This corresponds to a regime where condition C3 is no longer satisfied as the decaying subspaces are
mixed. Only the case κ= 0 leads to perfect retrieval, as expected from the symmetry. Conversely, when the
coherent coupling is larger than the dissipation rate (κ/γ > 1), the walker ends up in an equal mixture of
both patterns. Therefore, this system is a valid AM only in the regime κ/γ ∼ 0.

Furthermore, we can calculate the maximum storage capacity of this system. By construction, the model
can only store classical-like patterns that are orthogonal. Then, as shown in section 4.1, the maximum
storage capacity is 1/2. This limit corresponds to storing half of the bit-strings (2n−1) as patterns, while
the other half belongs to the decaying subspace. For example, we can choose as patterns all the states
satisfying |xµ⟩= [⊗n−1

i=1 |x
µ
i ⟩]|0⟩ (even states), and we can associate them with the odd state |ωµ⟩= Xn|xµ⟩

= [⊗n−1
i=1 |x

µ
i ⟩]|1⟩.
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This example proves the validity of our formulation to explain previous models that use symmetry to
realize a QAM. This particular model allows the perfect association of classical bit strings and may therefore
be useful for tasks involving classical data. This system has been experimentally realized using photonic chips
[25], but other platforms, such as ensembles of qubits, may also be useful. In fact, it is possible to understand
this model as an n-spin ensemble, where for the particular example in figure 5(a) the Liouvillian reads
L(ρ̂) =

∑
j[−i

ω
2 σ̂

z
j +κ ′σ̂x

j , ρ̂] + γD[σ̂−
2 ]ρ̂+ γD[σ̂−

3 ]ρ̂ where σ̂
−
j = |1⟩⟨0| is the decay operator on the jth

qubit and σ̂x,z
j are the Pauli matrices. This produces the same dynamics as the dissipative quantum walk and

has the patterns as steady states when κ ′ = 0 (in fact, it is the example of the amplitude decaying channel on
the last two qubits).

The dissipative quantum random walk for QAM can be applied as a quantum error correction protocol
for bit-flip errors. For example, let us consider the three-qubit code, where one has the logical states
|0L⟩= |000⟩ and |1L⟩= |111⟩ [39]. Here, single-bit flip errors can be typically corrected by a majority voting
mechanism. In the language of AM, this means that states that differ by a single bit from one of the two
logical states are associated with that bit. Hence, the dissipative quantum walk can be considered as an
autonomous quantum error correction for bit-flip errors. Indeed, symmetry protects the system from bit
flips by associating errors within the error space with the corrected state. Moreover, since the stable subspace
of the system is a DFS, quantum coherences are preserved and it allows the storage of a qubit.

8.2. Driven-dissipative resonator
Driven-dissipative resonators are well-studied systems displaying rich dynamical phenomena like
metastability and dissipative phase transitions [75] and have been recently employed for quantum memories
[76]. In particular, these oscillators have been shown useful for QAM in a metastable regime leading to
improved storage capacities [26] and allowing the storage of genuine quantum states [27]. In this section, we
will review the most important characteristics of the metastable QAM and show the possibility of having
permanent memories. Thus highlighting the versatility of these systems for storing different types of
quantum patterns.

The oscillator is described by a GKSL equation

∂ρ̂

∂t
=−i

[
Ĥn, ρ̂

]
+ γ1D [â] ρ̂+ γnD [ân] ρ̂, (31)

where we have standard terms for linear (single-photon) and nonlinear (multiphoton) damping [77, 78]
with rates γ1 and γn respectively. The Hamiltonian, which contains a n-order squeezing drive [75, 79, 80], in
the rotation frame and after the parametric approximation is

Ĥn =∆â†â+ iη
[
âneiθ0n−

(
â†
)n
e−iθ0n

]
. (32)

Here,∆= ω0−ωs is the detuning between the natural oscillator frequency and that of the squeezing force,
η, and θ0 the magnitude and phase of the driving, respectively. We observe that the model possesses Zn

symmetry, that is, the transformation â→ âexp(i2π/n) leaves the master equation invariant [75]. The
interplay between driving and dissipation, together with the rotation symmetry of the system, leads to the
generation of n symmetrically distributed coherent states {|αj⟩}nj=1 in the steady state, where αj = rexp(iθj)
with rn = 2η/γ and θj = 2π j/n+ θ0.

In the following parts, we will study the use of the driven-dissipative oscillator for QAM in two regimes:
the weak symmetry one, where the coherent states are metastable, and the strong symmetry one, where the
coherent states form n-cat states that are steady states of the dynamics. This allows us to illustrate metastable
and stable patterns encoding for QAM, in terms of coherent states and cat states, respectively.

8.2.1. Metastable encoding
In the presence of linear dissipation (γ1 > 0), the oscillator has a metastable phase that separates the slowest
decaying n Liouvillian modes (including the steady state) from the rest. These nmodes define nmetastable
phases {ρ̂µ}nµ=1 corresponding to the n lobes forming the steady state, so ρ̂µ = |αµ⟩⟨αµ|. In the upper left
part of figure 6 we see an example for n= 3, where three symmetrically distributed coherent states define the
quantum patterns.

We can also identify a basin of attraction that divides the phase space into n regions. The projector on
each of these basins can be written as

P̂µ =
1

π

ˆ θj+π/n

θj−π/n
dφ

ˆ ∞

0
dR R|Reiφ⟩⟨Reiφ| , (33)
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Figure 6. Driven-dissipative resonator for QAM. Parameters: n= m= 3, γ3 = 0.2, η= 1.56,∆= 0.4 and θ0 = 0. Upper: weak
symmetry regime (γ1 = 1). (left) Patterns are defined by the metastable phases: n symmetrically distributed coherent states.
(center) Initial data points are encoded in quantum states such as squeezed states, each of which should be associated with the
nearest pattern identified by the color (violet→ α0, magenta→ α1 and orange→ α2). The basins of attraction (equation (26))
that identify the correct pattern are defined with δ= 0.5. (right) The evolution of the state drives the system towards one of the
patterns as soon as the system enters the metastable transient. We see the result of the classification of 100 states, where each line is
a single trajectory for each initial state in the left part. The upper-right colored dots represent the lobe that the state should be
associated with while the trajectory color indicates the measured lobe after association. An accuracy of 0.96 is obtained for δ= 0.5
but increasing the spacing between basins leads to higher accuracy as expected. Lower: strong symmetry regime (γ1 = 0). (Left)
Patterns are defined by the steady states of the system: n-cat states. (center) The task of the QAM is to correct amplitude damping
errors which bring the system to the empty state |0⟩. (right) Strong symmetry preserves the parity of the original states, so the
states converge to the cat state of the corresponding parity.

so that all coherent states whose phase is in the interval [θj−π/n,θj +π/n] will be classified as being in the
jth basin. Then, the subspaces given by equation (26), with the projectors defined by equation (33), identify
the basins of attraction for each pattern. However, since coherent states form an overcomplete basis, these are
disjoint but only approximately orthogonal, as states lying close to the boundary between two basins have a
similar probability of converging to both lobes. To prevent this, we may choose a larger value of δ that would
correspond to less distorted patterns.

In figure 6, an oscillator with n=m= 3 is used to restore coherent states. The initial states can be
obtained from classical data encoded in squeezed coherent states, or directly from quantum inputs. For
example, discrete modulated continuous-variable quantum key distribution protocols use symmetric
distributed coherent states to encode the keys [81, 82]. The states typically suffer from noise during
transmission, which distorts the states. The task is to use QAM to recover the original states, characterized by
the colors of the points in the middle panel. For example, the initial points are randomly chosen coherent
states satisfying that the overlap with a basin is at least δ= 0.7 (see equation (26)).

For the reconstruction task, we inject 100 coherent states and compute a single trajectory for each of
them. At the start of the metastable transient an unambiguous measurement is performed as explained in
[26]. The state is associated with a lobe if the measurement triggers the corresponding projector
Πµ = |αµ⟩⟨αµ| [83]. The trajectory for each lobe is shown in the left panel of figure 6. States correctly
classified match the color of the trajectory with the plot. In this example, all states are classified, and 96% of
them are reconstructed correctly. The errors are produced by random jumps between lobes and between a
lobe and the steady state. The longer we wait to measure inside the metastable regime, the more likely is that
a jump will occur. Increasing the value of δ ⩾ 0.8 leads to a perfect retrieval accuracy, as the basins are more
orthogonal, although already with δ = 1/2 we can achieve accuracies above 95%.

8.2.2. Cat state encoding
When the linear dissipation is turned off (γ1 = 0), the system displays a strong Zn symmetry which divides
the Hilbert space into n symmetry sectors. In each sector there exists a steady state ρ̂µ (µ= 1, . . .,n) and we
can identify n conserved quantities {P̂µ} such that trPν ρ̂µ = δµν . These states for a driven-dissipative
nonlinear oscillator correspond to multimode n-cat states

∣∣∣C(n)
µ

〉
=

1√
n

n−1∑
k=0

ei2πµk/n|αk⟩ j = 0, . . . ,n− 1, (34)

where the coherent states |αk⟩ are the same as in the previous case. For n= 2, this reduces to the even and

odd cat states |C(2)
± ⟩= (|+α⟩± |−α⟩)/

√
2, and the conserved quantities are the projectors onto the even

and odd parity sectors, respectively. In general, the µth cat state contains only Fock states, |na+µ⟩ where
a ∈ N, and the conserved quantities can be expressed as P̂µ =

∑
a |na+µ⟩⟨na+µ|. Treating each cat state as
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a pattern, the strong symmetry enables a QAM since any state belonging to a symmetry sector will be
associated with the corresponding cat state. Even though the Hilbert space is infinite-dimensional, we can
also define a stable and a decaying subspace. The stable subspace, depending on the system parameters [75,
84], is spanned either only by the cat states, forming n irreducible subspaces {Sµ}n−1

µ=0, or also by their

coherences |C(n)
µ ⟩⟨C(n)

ν |, forming a three-dimensional DFS X . The latter would allow the storage not only of
the multimode cat states but also of any linear superposition of lobes such as a cat state between two lobes,
i.e. |α0⟩± |α1⟩. By exploiting the strong symmetry of the model, the eigenspaces of the conserved quantities,
that we called P̂µ, identify the basin of attractionsHµ for each cat state, and the associated decaying space is
the orthogonal complement to Sµ with respect toHµ.

This situation resembles the example of the dissipative random walk, where the block structure of the
Liouvillian generated by a strong symmetry allows for perfect association between decaying and stable states.
An example is shown in the lower part of figure 6 for n=m= 3. There are three cat states with parity
eigenvalue 0, 2π/3, and−2π/3 that can be used as patterns. Such multicomponent cat states have been
experimentally realized in superconducting platforms [85] with applications to quantum error
correction [86].

In the lower part of figure 6 we perform a particular QAM task where the patterns are the three-mode cat
states (equation (34) with n= 3). Here, the state may undergo an amplitude damping channel where, with
some probability, the state is reset to the ground state |0⟩. Then, the QAM restores the state. Indeed, since the
state is symmetry-protected, the cat state is recovered after a short time, due to its dynamics. An example of
such a trajectory is seen in the bottom right panel of figure 6, where we plot the overlap with the cat state

|C(3)
0 ⟩. As soon as the error occurs, the state is associated back to the cat state.
Note that, measuring the parity of the state is not enough to determine if the evolution has converged to

the pattern. Indeed, in this example, parity is always conserved but the state jumps from the vacuum state to
the cat state. Hence, in general, the symmetry guarantees that a state will be associated with the steady state
with the same symmetry, but we cannot use the respective conserved quantity to determine if the association
has happened or not. For that, we must resolve to an operator that can identify if the state has evolved into
the pattern or not.

8.3. Geometrically uniform states
In this section, we extend the example introduced in section 5.2 to model an AM that stores many
non-orthogonal patterns in a two-dimensional DFS. Consider a system of n qubits where the total Hilbert

space isH=H⊗n
2 spanned by the states {|x⟩= |x1⟩|x2⟩ · · · |xn⟩}2

n−1
x=0 where we denote the elements of such a

basis as x=
∑n

t=1 xt2
n−t, and the term |xt⟩ with xt ∈ {0,1} represents the tth qubit basis and t= 1, . . .,n. We

want to construct a two-dimensional stable subspace that allows us to store the GUS. For this, we arbitrarily
chose two states: |0̃⟩= |0⟩⊗n and |1̃⟩= |1⟩⊗n. The patterns stored in S correspond to a number
M ̸⊥ ≡M> 2 of GUS, |ψℓ⟩= Ûℓ−1|ψ⟩, ℓ= 1, . . .,M, where Û is a unitary operator, Û= exp(−i2π σ̂y/M), so
that ÛM = I2 and σ̂y = i(|1̃⟩⟨0̃| − |0̃⟩⟨1̃|). Then the stable subspace consists of only one DFS S = X1 (with
respect to the notation introduced in section 4.2,M⊥ = 0 and C ̸⊥ = 1) [87].

As explained in section 4.2, for each pattern there must exist a decaying subspace consisting of all states
associated with the particular pattern. Since there is only one DFS in the stable subspace, we can decompose
the decaying subset asD =

⊕M
ℓ=1Dℓ, where we have omitted the index τ = 1, which appears in

equation (14), for the sake of easier notation. From the definition of the stable subspace follows that a basis

of the complete decaying part can be obtained asD = S⊥ = span{|ωx⟩}2
n−2
x=1 , with dimension 2n− 2. We

thus define the ℓth decaying subspace according to

Dℓ = span{|ωx⟩ ∈ D | x modM= ℓ} , (35)

so that the decaying states |ωx⟩ are associated with the ℓth rotated pattern if the label xmodulusM is exactly
ℓ. As an example, if we consider a total system made of n= 3 qubits where we storeM= 3 patterns in the
DFS spanned by {|0⟩, |7⟩}, the three decaying subspaces areD1 = span{|1⟩, |4⟩},D2 = span{|2⟩, |5⟩} and
D3 = span{|3⟩, |6⟩}. Likewise, when consideringM= 4 patterns, we will build the following four decaying
subspaces,D1 = span{|1⟩, |5⟩},D2 = span{|2⟩, |6⟩},D3 = span{|3⟩}, andD4 = span{|4⟩}. Note that, in the
generic case, this construction leads to decaying subspacesDℓ not all sharing the same dimensions, as shown
in figure 7.

The expression for the Kraus operators follows the one given in equation (15)–(17), where the part acting
on the stable subspace is proportional to the identity, the part acting on the ℓth decaying subspace reads

KD
α,ℓ ≡ KD

α,1,ℓ =

dℓ−1∑
x=0

cαℓ,x|ωℓ
xM+ℓ⟩⟨ωℓ

xM+ℓ|, (36)
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Figure 7. Bloch-sphere representation of the stable subspace characterized by a two-dimensional DFS in which seven GUS defined
by the unitary Û are stored. For each pattern ρ̂µ, there is a decaying subspace formed by states inH⊗n

2 whose decimal
representation moduleM is equal to µ.

for ℓ= 1, . . . ,M with dℓ = ⌊(ND− ℓ− 1)/M⌋+ 1. And finally, the part mixing stable and decaying is

KSD
α ≡ KSD

α,1 =

M∑
ℓ=1

1∑
j=0

dℓ−1∑
x=0

bαℓ,j,x|j̃⟩⟨ωℓ
xM+ℓ|. (37)

Reminding that we aim at storing GUS as patterns, i.e. the states

|ψℓ⟩= Ûℓ−1|ψ⟩=
1∑

j=0

ψje
−iπ jℓ/M|j̃⟩, (38)

the associativity condition as formulated in equation (C5) reads∑
α

(
bαℓ,k,y

)∗
bαℓ ′,j,x = δℓℓ ′κℓxy⟨ j̃|Ûℓ−1|ψ⟩⟨ψ|(Ûℓ ′−1)†|k̃⟩, (39)

which can be expressed as ∑
α

(bαℓ,k,y)
∗bαℓ,j,x = κℓxyψjψ

∗
k e

−iπℓ( j−k)/M. (40)

By employing the results in appendix C.2, the parameters κℓxy, can be further written as κℓxy = δxy(κ
ℓ
x)

2, where

κℓx is given in terms of the decaying parameters cαℓ,x as in equation (C7). As such, the mixing parameters bαℓ,j,x
need to satisfy ∑

α

(
bαℓ,k,x

)∗
bαℓ,j,x =

(
κℓx
)2
ψjψ

∗
k e

−iπℓ( j−k)/M. (41)

Then, a simple solution of the above equation can be derived by associating a single Kraus operator to each
collection of non-vanishing mixing terms, {bℓ,j,x,∀j}, which is uniquely identified by the pair (ℓ,x). In this
case, the mixing parameters need to satisfy

bαℓ,j,x = ψjκ
ℓ
x exp

(
i
2π

M
jℓ

)
δα−2,xM+ℓ. (42)

First of all, notice that the CPTP condition in equation (C6) is automatically satisfied with this choice.
Secondly, we further took into account that there are two Kraus operators acting only on the stable subspace
as K̂S

α = aαIS for α= 1,2 (and KS
α = 0 for α> 2) (see equation (11b)). Hence, the final form of the map is

K̂1 = [a1IS]⊕

[
M∑
ℓ=1

dℓ−1∑
x=0

√
1− |κℓx|2|ωxM+ℓ⟩⟨ωxM+ℓ|

]
, (43a)

K̂2 = [a2IS]⊕ 0, (43b)
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K̂α =
1∑

j=0

ψjκ
ℓ
x exp

[
i
2π j

M
ℓ

]
|j⟩⟨ωxM+ℓ|δα−2,xM+ℓ, α= 3, . . . ,2n + 2. (43c)

The previous map performs perfect association between the decaying states in each basin (Dℓ) and the
corresponding pattern (|ψℓ⟩).

Now, we can calculate the storage capacity of the model using equation (20). Here, the dimension of the
stable subspace is NS = 2, and the dimension of the decaying subspace is ND = 2n− 2. Then,

αQ =
M

2+ 2n− 2
=

M

2n
, (44)

where we note thatM is only bounded by ND, as there must be at least a decaying state for each pattern.
Thus, in the limitM→ 2n− 2 we arrive at αQ→ αQ

c ≈ 1.
However, the classical storage capacity is smaller because we have to retrieve the information, that is, we

need to discriminate the patterns. The optimal measurement strategy to maximize the success probability of
discriminating GUS is the square-root measurement Psucc = |⟨ψ|Φ̂−1/2|ψ⟩|2, where Φ̂ =

∑
k |ψk⟩⟨ψk| [71].

For GUS, we have Φ̂ = (M/NS)IS so Φ̂−1/2 =
√

NS/MIS. and Psucc = NS/M. Then, the classical storage
capacity is

αQC
c =

NS

M

M

NS +ND
=

NS

NS +ND
=

2

2n
, (45)

which is the storage capacity one gets when storing two orthogonal patterns in a two-dimensional stable
subspace. In other words, due to the measurement, the maximum storage capacity is limited by the storage
capacity of orthogonal patterns. But, of course, this storage capacity is much smaller than αQ

c in
equation (44).

9. Discussion

The general framework for QAM elucidates their key features, underlying principles, and limitations. This
unified approach also facilitates meaningful comparisons among diverse recent models. Initially, QAM was
framed as a modified version of Grover’s search algorithm [7]. This formulation can be regarded as a pattern
completion problem rather than an association between the initial state and the target [13]. Patterns are
encoded as classical bit strings in n qubits, and the algorithm searches the space of all possible patterns for
those that are identical in the first n− x qubits to the input. However, the algorithm is not able to restore
imperfect preparation, differing therefore from a QAM. Moreover, because of its unitary nature, this
approach departs from the original Hopfield formulation, as the patterns in question are not fixed points of
the dynamics [7, 13]. Indeed, Grover’s algorithm requires an optimal number of iterations depending on the
starting point and the number of patterns. A possible solution is to use the modified Grover search method
where the target states are fixed points [88–90]. Interestingly, even though some versions of this algorithm
may store an exponential number of classical patterns [7, 8, 91, 92], it also introduces an exponential number
of spurious memories. This is because any state in the Hilbert space has a non-zero probability of retrieval
(decreasing with the dimension of the Hilbert space) so any state that is not a pattern is a spurious memory.

More in general, unitary-based QAM cannot exhibit fixed points of the dynamics, with the exception of
the trivial (identity) case. Hence, these unitary approaches need to estimate beforehand the optimal number
of applications of the unitary gate (or the optimal time to evolve a Hamiltonian) to retrieve the desired
pattern with the highest probability. For instance, [8] reports that 80 repetitions of the algorithm are needed
to retrieve the pattern with probability 1.4 · 10−4. Similarly, the proposals of [10, 11] use a
repeat-until-success strategy that measures the correct pattern depending on the Hamming distance between
the input and all the patterns. As for the capacity of these proposals, it is limited by that of the employed
Hebbian learning rule.

Complementary to the quantum circuit-based proposals discussed above, open quantum system
approaches (analog) have been recently proposed and analyzed [17, 19–21, 59]. These contributions
investigate the conditions under which some quantum many-body spin systems can effectively show AM
behavior through the use of engineered dissipation. In contrast with unitary proposals, this allows the system
to exhibit multiple fixed points, which play the roles of patterns. Notably, they make use of the Hebbian’s
prescription to embed target spin configurations, i.e. the memories, and therefore the latter can be regarded
as classical ones. Within the framework outlined in section 3, the quantum map modeling these types of
generalizations describes Markovian dynamics, Λ(•) = eLt(•). The evolution governed by the latter is
analyzed in these works in specific limiting regimes (e.g. the thermodynamic limit [17, 19], or some
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perturbative regime concerning terms of the dynamical generator [21]) at present. Here, the resulting
effective evolution enables the system to operate as an AM. Within our framework, this can be understood as
follows: condition C1, which requires multiple fixed points for the map, is satisfied by employing the
Hebbian prescription, which sets classical patterns as fixed points of the effective evolution. Further, the
dynamical equations emerging from the latter describe time-dependent variables (rather than operators),
i.e. loosely speaking, some classical evolution (see [93] for a rigorous treatment). Such a dynamical system
displays finite basins of attraction for each pattern, consistently with condition C2. While these QAMmodels
in many-body systems are limited to classical regimes, our framework provides a foundation for exploring
the quantum regime, presenting a promising avenue for future research.

Looking at further proposals in the existing literature, we identify some models of QAM that can perform
effective association, albeit storing patterns only probabilistically [8, 10] while other models accomplish
perfect storing of patterns in terms fixed points, yet lacking the association property [28]. Classically, the two
features of stability and association go hand in hand, as can be seen, for example, in the HNN. Here, the
non-linear dynamics, equipped with the Hebbian learning rule, guarantees that patterns are stable states with
non-vanishing basins of attraction, at least below the critical storage capacity. To define a functioning QAM,
however, the stability of patterns and the association between similar states must be individually addressed.
In section 3, we have established the conditions under which we can achieve both features via CPTP maps.

The two main ingredients in the process of association identified in the discussed framework are
dissipation and symmetry. Regarding dissipation, engineered losses act as a mechanism to drive the state of
the system into a small subset of long-lived states. This aspect is common to quantum machine learning
algorithms such as quantum reservoir computing [94, 95], quantum neural networks [53, 96] or variational
quantum algorithms [97, 98], but also in algorithms such as state preparation [99, 100], and quantum error
correction [101, 102]. This suggests the usefulness of our framework beyond QAM. Engineered dissipation
can be implemented both in quantum circuits using the collision model algorithm [103], as experimentally
demonstrated on the IBM platform [104], and in analog devices using the techniques introduced in [105].

Moving forward to the role of symmetries, they allow perfect discrimination between states that fall in
the same symmetry sector. Previous research has shown that quantum machine learning models with the
same symmetry as the data can avoid training problems and alleviate barren plateaus [106–108]. QAM also
takes advantage of symmetries in quantum systems to perform the association process, allowing the storage
of stable patterns in open quantum systems featuring strong symmetry or metastable patterns in the case of
weak symmetry. For example, in section 8.1 we show the implementation of autonomous quantum error
correction protocols [76, 101] where the patterns are fixed points of the dynamics and the error space is
corrected dynamically thanks to a strong symmetry by associating the erroneous states with the correct
logical qubits [73]. In another example proposed in section 8.2, we show that the metastable phase in a
driven-dissipative resonator can be used to correct states generated by discrete-modulated
continuous-variable quantum key distribution protocols, both of which share the same discrete rotational
symmetry. The developed QAM framework sets therefore the basis for a broader context of applications,
such as quantum memories or error correction, and also contributes to establishing the interplay between
dissipation and symmetry in quantum machine learning.

We emphasize that the generality of the proposed formulation allows the storage of arbitrary quantum
states as patterns, going beyond the classical-like patterns typically employed in previous formulations of
QAM [7, 10, 17]. Indeed, the proposed general map can target all possible states, as, for instance, the case of
cat states discussed in section 8.2. By exploiting the general properties of quantum channels, we have
constructed maps that are not constrained by the limitations of the classical Hebbian rule. In our case, the
storage of quantum patterns is permitted by the learning rule introduced in equation (12), which ultimately
allows us to deal with quantum data [6] and to potentially store an exponentially large number of patterns
efficiently.

Moreover, in section 5, we have proposed a simple, yet universal, definition of the quantum storage
capacity that conveys the classical idea of quantifying the density of faithfully stored information in a system.
Using this definition, we have separately established its bounds in the case of quantum outputs and also in
the case of classical outputs, where the effect of measurements was considered. Interestingly, allowing for
non-orthogonal patterns can enable an increase of the critical storage capacity for quantum outputs, even
though in the case of classical patterns (after measurement), one encounters similar limitations in the
association (success) probability, as in classical AM when correlated patterns are allowed.

The comparison with classical AM models is also interesting but not straightforward as patterns in QAM
are quantum states in a Hilbert space not accessible by classical systems. Hence, comparisons should be done
at the same level, either taking a thermodynamic limit of a quantum system and using the classical expression
of storage capacity [20], promoting a classical system to the quantum realm and using the expression
provided in the main text, or exploiting a relation between the Hilbert space dimension and the size of the
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classical system. However, such analysis should be done in a case-by-case basis as is the case for classical spin
systems and their quantum generalizations in terms of qubits.

In the case of the classification of classical input data, we can rely on techniques common in quantum
machine learning, which use a feature map to encode such data into quantum states [109]. For our approach,
and in order to achieve perfect [110] association, it is crucial that data belonging to different labels µ lead to
orthogonal decay states |ωµ⟩, which then evolve into label states |µ⟩ (orthogonal or not) [52]. Thus,
quantum coding must extract the common features of the µth set that are not found in any other class and
encode them in our system of interest [111]. Of course, finding the best feature map is an open problem in
the context of quantum machine learning and beyond the scope of this work. Instead, this work reveals the
necessary structure that the final channel must have to perform classification tasks.

In conclusion, we have successfully developed a comprehensive framework for QAM using CPTP maps.
This framework offers several advantages over classical models, such as the ability to encode non-orthogonal
states and potentially store an exponentially large number of patterns efficiently. In our formulation, both
classical and quantum patterns can be stored, and such patterns can be either stable or metastable dynamical
attractors. We also analyzed the role of symmetries through the definition of basins of attraction, which turn
out to be the enabling mechanism for QAM. These findings open up new possibilities for developing more
powerful quantum machine learning algorithms, quantum key distribution, and enhanced error correction
techniques. Furthermore, they lay the ground to design the most suited implementations on different
experimental platforms [21, 23, 25, 27].
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Appendix A. HNN

Hopfield originally proposed a network of all-to-all connected binary neurons as a content-addressable
memory or AM [2]. Concretely, the model consists of n binary neurons, where the state of the ith neuron, si,
can take two possible values, si =+1 and si =−1, corresponding to the firing and resting states, respectively.
The state of the compound system can be represented in terms of a n-bit string s= (s1, s2, . . ., sn). Further,
one can associate the following energy function with the system as follows:

E=−1

2

∑
i̸=j

Jijsisj, (A1)

where J ij represent the coupling between the ith and jth neuron. A deterministic dynamics, evolving the state
of the system along trajectories that monotonically decrease the energy function, can be defined in terms of
the following single flip of the ith neuron:

si← sgn

∑
j ̸=i

Jijsj

 . (A2)
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In the latter, sgn is the sign function, letting the ith neuron fire whenever the input signal coming from the
other neurons,

∑
j ̸=i Jijsj, assumes a positive value. Notice that the input signal plays the role of a local field,

hi ≡
∑

j ̸=i Jijsj, acting on the ith neurons. Moreover, the energy function can be expressed in terms of the

latter as E=− 1
2

∑
i sihi. Thus, we can see that at each time step the neuron si gets aligned with the local field

hi, and, correspondingly, the energy undergoes a monotonic decrease, eventually reaching a local minimum,
i.e. a stable configuration.

The key point is that stable states can be encoded by means of the coupling parameters J ij, in the form of
M vectors ξµ representing the patterns. Several rules can be used to encode such memories, the Hebbian
learning rule being the most prominent example [1]. Here, the couplings are chosen such that

Jij =
1

n

M∑
µ=1

ξµi ξ
µ
j , (A3)

and the patterns are further treated as independent and identically distributed random variables. Their
distribution is a bimodal one, with P[ξµi =±1] = 1

2 . As a result, in the large-n limit patterns are unbiased,
limn→+∞

∑
i ξ

µ
i /n= 0, and uncorrelated limn→∞ ξµ · ξν/n= δµν . Under the above conditions, one can

show that the patterns ξµ are stable fixed points of the dynamics [112] if
√

M/n≪ 1. In other words, the
system behaves as an AM. Indeed, patterns are not only fixed points of the dynamics, but they are also stable
ones. This means that for each pattern there exists a basin of attraction, i.e. a finite region of the phase space
whose points are asymptotically evolved into the pattern itself.

Hence, an arbitrary initial state s that contains some errors with respect to the patterns is evolved via the
dynamics (A2) into the most similar one, thus permitting the retrieval of the correct information. As already
commented in the main text, the maximum number of patterns that can be stored by this kind of AM, i.e. its
storage capacity, readsM/n= 0.138 [30, 31].

It is worth mentioning that the HNN can be further generalized to include some noise, in the form of an
effective temperature. The description of the system in this scenario goes beyond the scope of this appendix,
and we refer the reader to some literature on the topic [30, 31].

Appendix B. CPTP conditions

A quantum channel is completely positive and trace-preserving if the Kraus operators satisfy the
completeness relation (3). Let us enforce this condition for the Kraus operators that are given in the block
structure of equation (5). Here, the CPTP condition can be equivalently expressed in terms of the block
elements of each Kraus operator, and it reads [51]∑

α

(
KS
α

)†
KS
α = IS, (B1a)∑

α

(
KS
α

)†
KSD
α =

∑
α

(
KSD
α

)†
KS
α = 0SD, (B1b)∑

α

(
KSD
α

)†
KSD
α +

(
KD
α

)†
KD
α = ID. (B1c)

In section 4.1 we introduced the form of the Kraus blocks for AM with orthogonal patterns. Using the
expression in equation (8)–(10) and substituting in equation (B.1) we find

∑
µ

∑
j

[∑
α

|aαµ,j|2
]
|µj⟩⟨µj|= IS (B2a)

∑
µ

∑
j

∑
x

[∑
α

(
aαµ,j

)∗
bαµ,j,x

]
|µj⟩⟨µj|ωµ

x = 0SD (B2b)

∑
µ

dµ∑
x,y=1

∑
α

∑
j

(
bαµ,j,y

)∗
bαµ,j,x

+ δxy|cµ,x|2
 |ωµ

x ⟩⟨ωµ
y |= ID (B2c)

which reduce to the expressions in equation (11).
When considering non-orthogonal patterns (see section 4.2) we obtain similar results with the addition

of an extra index to account for the DFS where the non-orthogonal patterns belong.
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Appendix C. Derivation of Kraus parameters

In this section, we derive the form of the parameters that form the Kraus operators in section 4 for the
orthogonal and general formulation of the QAMmap.

C.1. Orthogonal patterns
Combining equation (11) and (12), we can further express the rate κµxy in terms of the coefficients defining
the Kraus operators in equation (8)–(10). To do so, as an intermediate step, by exploiting the expressions of
ρ̂µ and KSD

α,µ (see equation (8)), one can write equation (12) in terms of the following system of equations∑
α

(
bαµ,k,y

)∗
bαµ,j,x = κµxyu

µ
j δjk. (C1)

Thus, by combining the latter with equation (11c), the rates κµxy read

κµxy = δxy

[
1−

∑
α

|cαµ,x|2
]
, (C2)

where we must have that 0< κxx < 1, whence
∑

α |cµ,x|2 < 1. Therefore, the rate at which the decaying states
are associated with the corresponding pattern is the inverse of the rate at which they vanish, consistently with
trace preservation. Finally, plugging the last expression for the rates κµxy in the constraint (C1), we obtain the
following equation

∑
α

(
bαµ,k,y

)∗
bαµ,j,x =

[
1−

∑
α

|cαµ,x|2
]
uµj δxyδjk. (C3)

A simple solution of the latter exists, assuming that there are as many Kraus operators as the number of

combinations of (j, x), characterized only by the non-vanishing parameter b( j,k)µ,j,x. If this is the case, we can
write

bαµ,j,x =

√√√√uµj

[
1−

∑
α

|cαµ,x|2
]
δα,j+sµx. (C4)

In the above expression, there is no restriction on the choice of the parameters cαµ,x as long as their
modulus-squared sum is smaller than one. In terms of the parameters aαµ,j, we notice that equation (11b)
imposes a further limit on the Kraus operators displaying aαµ,j ̸= 0. Those Kraus operators with a non-zero
bαµ,j,x need to have a vanishing a

α
µ,j, and vice-versa. Therefore, at least two additional Kraus operators,

equipped with a non-vanishing diagonal part of KS
α,µ, need to exist.

Notice that the solution obtained in equation (C4) corresponds to the configuration requiring the least
amount of Kraus operators. However, such a solution is not unique, as by increasing the number of Kraus
operators, one can find other maps Λ satisfying the constraints. To conclude, we stress that the parameters
aαµ,j, b

α
µ,j,x and cαµ,x can be considered as degrees of freedom that can be tuned to guarantee the associativity

condition defined by equation (6).

C.2. General formulation
Similar to the previous case, we can find an expression for the mixing parameters for Kraus operators acting
on DFS. Substituting equation (17) in equation (18), we obtain∑

α

(bα,τℓ ′,k,y)
∗bα,τℓ,j,x = δℓℓ ′κℓxy⟨τj|ρ̂

(τ)
ℓ |τk⟩. (C5)

By combining equation (17) and equation (16), the CPTP condition (B1c) (see appendix B) reads

∑
α

 sτ∑
j=1

(
bα,τℓ ′,j,y

)∗
bα,τℓ,j,x

+ δℓℓ ′δxy|cα,τℓ,x |
2 = δℓℓ ′δxy. (C6)

Thus, similarly to the derivation of equation (C2), an expression for the rate parameters κℓxy can be obtained.
Substituting equation (C5) into equation (C6), we get

κℓxy = δxy

[
1−

∑
α

|cα,τℓ,x |
2

]
, (C7)
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and the expression for the mixing parameters reads

∑
α

(
bα,τℓ ′,k,y

)∗
bα,τℓ,j,x = δℓℓ ′δxy

[
1−

∑
α

|cα,τℓ,x |
2

]
⟨τj|ρ̂(τ)ℓ |τk⟩. (C8)

For the particular case ρ̂(τ)ℓ = |ψ(τ)
ℓ ⟩⟨ψ

(τ)
ℓ | where |ψ

(τ)
ℓ ⟩=

∑sτ
j=1[ψ

(τ)
ℓ ]j|τj⟩ we may find a solution

bα,τℓ,j,x =
[
ψ
(τ)
ℓ

]
j

√
1−

∑
α

|cατ,x|2δα−α0,xmmax
̸⊥ +ℓ. (C9)

withmmax
̸⊥ =maxτ m

(τ)
̸⊥ and α0 is the number of Kraus operators with non-vanishing elements in the stable

and decaying part (α0 ∈ [2,(NS)2 +(ND)2]). The index of the Kraus operators runs over α= 1, . . . ,m ̸⊥
maxdmax

where dmax =maxτ d
(τ)
ℓ since parameters belonging to different Xτ and different Sµ can go in the same

Kraus as they are not restricted by the CPTP conditions.

Appendix D. Relation with genuine incoherent operation

In this work, we emphasize the necessity that QAM feature non-empty decaying subspace,D. In this way, the
states belonging to the latter can be associated with the patterns, i.e. states of the invariant subspace S , via the
dynamical maps of section 4. In this appendix, we show how such a framework can encompass a model
previously proposed [28, 62], in which a CPTP map is derived displaying multiple fixed points. Notably, and
at variance with our construction, such a map stores an entire basis of the Hilbert space as patterns. Hence, in
our formalism, this scenario corresponds to the entire Hilbert space being the stable space, S =H, leaving an
empty decaying spaceD = ∅. In fact, as we show in the following, it is possible to derive the
above-commented
map as a particular case of the QAM that we obtained in section 4.1.

Let {|µ⟩} represent a basis of the Hilbert space, with each state |µ⟩ being invariant under the map Λ.
According to equation (8), the Kraus operators read

KS
α = Kα =

∑
µ

aαµ |µ⟩⟨µ|, (D1)

which, by assumption, defines the Kraus operator acting on the whole Hilbert spaceH. In the Jamiolkowski–
Choi–Sudarshan (JCS) representation [113], the map Λ can be expressed in terms of the following linear
operator

JΛ =
∑
α

|Kα⟩⟩⟨⟨Kα|, (D2)

such that JΛ ∈ B(H⊗H), and where we have also introduced

|Kα⟩⟩=
∑
µ

aαµ |µµ⟩⟩, (D3)

with |µµ⟩⟩ ∈ H⊗H. By plugging the above in the JCS representation of the map, we obtain

JΛ =
∑
α

∑
µ,ν

(aαν )
∗ aαµ |µµ⟩⟩⟨⟨νν|

=
∑
µ

|µµ⟩⟩⟨⟨µµ|+
∑
µ ̸=ν

[∑
α

(aαν )
∗ aαµ

]
|µµ⟩⟩⟨⟨νν|, (D4)

having further employed the CPTP condition of the Kraus operators (equation (B1a)) in the second line.
Identifying the term in square brackets with coefficients of the form 1+ γµν we recover the expression of the
map proposed [28]. Moreover, being the spectral radius of CPTP maps bounded by 1, so that |aαµ |⩽ 1, we
obtain |1+ γµν |⩽ 1 if aαµ ̸= aαν , this leading to vanishing coherences upon many repetition of the map.
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